一、高速公路桥梁梁板裂缝的诱发原因及处理方法(论文文献综述)
王冰[1](2021)在《中小跨径桥梁智能安全风险等级评价及养护措施研究》文中指出近些年,随着我国公路桥梁工程建设蓬勃发展,桥梁数量也随之逐年增长,越来越多的在役桥梁结构安全性引起了大家的广泛关注。当前,我国许多服务器内的桥梁中有很多存在安全隐患,它们的承载能力已不能满足要求,一旦其结构稳定性遭到破坏,将会造成巨大的损失亡。这也体现出如何高效开展桥梁安全风险评价的重要性。由于目前在服务期内的桥梁病害数量较多,且公路桥梁大多以中小跨径桥梁为主,本文把部分中小跨径桥梁作为本文研究样本,对该类型桥梁进行主要病害判断、构建样本集、构建智能评价模型、开发系统等一系列工作,对在役桥梁的风险等级识别和评价,为养护管理人员提供技术支持。本文研究内容主要由以下四个部分组成:(1)通过对在役桥梁进行风险分析研究,明确了在役桥梁安全风险评价的重要性和必要性。首先总结中小跨径桥梁病害,并对常见病害进行原因及机理分析,为后文对在役桥梁评价后的原因分析及养护建议做基础。(2)风险识别及样本构建阶段,选用模糊层次分析法,构建安全风险评价模糊评价指标体系计算推理病害数据构造样本数据集。参照概率论的方法,对桥梁病害数据进行数理统计,并检验所构造取样本的合理性。(3)构建评价模型阶段,首先分析卷积神经网路及专家系统对模型构建的启发,基于神经网络专家系统全融合模式构建桥梁评价模型及养护措施分析模型,通过对模型超参数的设定和训练,提高模型的精度。安全风险评价系统的开发,针对研究对象的特点提出对系统框架设计的原则,搭建桥梁安全风险评价智能系统框架。运用MATLAB2020a对安全风险评价系统进行开发,构造系统界面,方便进行人机交互并快速准确的得到桥梁安全风险评价等级与养护措施。(4)项目实例应用,本文一座高速公路通道桥作为案例,通过桥梁进行检测,收集检测数据、对数据进行预处理,将检测数据、桥梁基本概况等信息录入到所开发的智能安全风险评价系统界面,对该中小跨径桥梁的风险等级及养护建议措施进行评价,参照系统输出的评价等级,给出相应的病害形成原因和养护维修措施。本文研究目的是为了能借助智能系统,对桥梁的的安全风险等级进行更准确高效的判断并提供合理的养护建议,保障桥梁在运营期内的正常使用,并为养护人员提供强有力的技术支持。
田帅[2](2020)在《在役RC肋梁桥桥面板疲劳性能与维护规划方法研究》文中进行了进一步梳理钢筋混凝土肋梁桥是一种经典的桥型,在我国应用较为广泛。随着我国公路交通量的快速增长,车辆荷载的快速增加,公路桥梁车辆活荷载应力水平已经明显增大,在车辆荷载长期的反复作用下,钢筋混凝土肋梁桥的疲劳问题不容回避。而钢筋混凝土肋梁桥在其服役时间内容易遭受疲劳荷载作用的是混凝土桥面板,而且大量的在役钢筋混凝土肋梁桥旧桥,在建桥时对未来交通量预测的不准确,从而导致混凝土桥面板疲劳损坏日益严重,甚至出现疲劳塌陷问题。为了确保旧桥的运营安全,为桥梁的评估、维护、加固、设计等提供参考,对钢筋混凝土肋梁桥桥面板疲劳性能评估与疲劳加固方法的研究已经具有较强的现实意义。本文从2017年开始,对在役钢筋混凝土肋梁桥桥面板的疲劳性能与疲劳加固方法进行了较为系统的试验研究和理论分析,共进行了 3片基准试验梁、4片疲劳试验梁、3片基准加固试验梁、3片疲劳加固试验梁及6个锚固试件等的试验研究,研究内容包括在役钢筋混凝土肋梁桥桥面板的疲劳破坏形态与评价体系、疲劳性能分析、疲劳加固性能分析、附加锚固分析、疲劳维护与规划分析等。主要工作内容和结论如下:(1)基于15座桥梁,调研了近10年来我国在役钢筋混凝土肋梁桥桥面板疲劳破坏的现状,选取两座典型的钢筋混凝土肋梁桥进行桥面板实态检测,对比了国内外现有的钢筋混凝土桥面板疲劳损伤的判定基准。基于调研结果,在役钢筋混凝土肋梁桥桥面板,疲劳破洞面积86.7%在3m2以下,以冲剪破坏为主,疲劳破坏年限主要体现在30年以内,比正常疲劳寿命要短10年以上,建桥后10~20年发生疲劳破坏的桥梁占46.7%,桥面板疲劳破坏年限严重地低于设计使用年限。车辆荷载的反复作用是影响桥面板疲劳破坏的关键因素之一,重铺桥面铺装不能延缓桥面板的疲劳破坏。我国钢筋混凝土肋梁桥桥面板缺少疲劳评价体系。(2)选取16m跨径的钢筋混凝土简支T形肋梁桥,按照1:4相似比例,缩尺设计跨径为4m的试验梁,基于长宽比6.5、1.88的2片基准试验梁,通过静载试验测出桥面板的极限承载力,基于长宽比6.5、3.76、1.88的3片疲劳试验梁,疲劳荷载水平取0.515,进行定点等幅疲劳加载试验。基于试验结果,在疲劳荷载作用下,桥面板表面产生放射状裂缝,发生冲剪破坏,长宽比为6.5、3.76、1.88的试验梁桥面板疲劳寿命的比值为1:1.228:1.396,在相同的疲劳荷载情况下,双向板的疲劳性能好于单向板。(3)基于疲劳试验,使用ABAQUS建立试验梁有限元疲劳损伤分析模型,分别分析长宽比、疲劳荷载水平、板厚对桥面板疲劳性能的影响,探讨钢筋混凝土肋梁桥桥面板的S-N曲线。基于模拟分析,桥面板长宽比由6.5降低到3.76、1.6,其疲劳寿命分别延长15%、33%,双向板疲劳寿命长出单向板20%左右,疲劳荷载水平由0.383降低到0.271,其疲劳寿命延长54%,当桥面板增厚12.5%时,桥面板的疲劳寿命延长15%左右。在相同的疲劳荷载水平、疲劳损伤次数下,长宽比较小的桥面板剩余承载力,高于长宽比较大的桥面板,板厚对桥面板疲劳性能的影响大于长宽比,小于疲劳荷载水平。(4)选取条形钢板、碳纤维布和碳纤维网格,作为桥面板疲劳加固材料,选择长宽比2.8的试验梁作为桥面板加固对象,依次开展静载破坏试验、疲劳荷载水平为0.515的定点等幅疲劳加载试验,探讨疲劳加固下桥面板S-N曲线。基于试验结果,当荷载循环次数达到疲劳寿命的90%以上时,加固桥面板在加载点处出现疲劳主裂缝,未加固、碳纤维布加固、碳纤维网格加固、条形钢板加固的试验梁桥面板,其疲劳寿命之比为1:1.754:1.789:1.533,桥面板加固后,其疲劳寿命延长53.3%~78.9%,桥面板加固后劣化速度明显放慢,在疲劳进展期,加固材料将桥面板的劣化值降低50%左右,在相同的疲劳荷载情况下,碳纤维布和碳纤维网格对桥面板的疲劳加固效果好于条形钢板加固。(5)通过6片试验板的加载试验,分析碳纤维布加固单向板的适宜锚固方法,针对桥面板上面补强的特点,开展碳纤维布与桥面铺装结构层间粘结性能研究。基于试验结果,非封闭碳纤维压条集中粘贴锚固、封闭缠绕碳纤维压条集中粘贴锚固的锚固效果,强于非封闭碳纤维压条有间隔粘贴锚固、钢板压条螺栓锚固,桥面板的剥离破坏发生在压条有间隔的锚固情况,碳纤维压条抵抗碳纤维布剥离破坏的能力强于钢板压条,对钢筋混凝土肋梁桥单向板加固时,适宜采用非封闭碳纤维压条集中粘贴锚固的形式,加铺碳纤维的桥面板与桥面铺装结构层间的抗剪强度、黏结强度满足要求。(6)以折衷规划、失效树规划为基础,借鉴机械设备维修规划理念,建立在役钢筋混凝土肋梁桥桥面板疲劳的维护与规划模型,采用Weibull分布理论,分析桥面板疲劳寿命与不同破坏概率之间的关系,疲劳荷载水平取0.515,疲劳维修时间节点取0.4倍的疲劳寿命时,模型失效概率不到0.01,维修时间节点取为0.2倍的疲劳寿命时,模型失效概率为0.00011~0.000013。
郭皆焕[3](2020)在《某山区跨越水库桥梁设计与施工研究》文中进行了进一步梳理本文针对某山区跨越水库单跨跨径较大桥梁,结合其相应的建设条件,详细论述其设计、施工等关键技术节点,包括阐述自然条件对项目影响、结构耐久性设计、设计理论依据、大桥结构设计、方案综合比选、主要细节结构计算、施工理论依据及具体施工方案的制定等。本项目水库大桥桥址处两岸距离约260m,通过对各个设计及施工的方案进行详细论述,最终达到对山区跨越水库大桥设计、施工过程进行浅析研究的目的。主要研究内容及结论如下:1、阐述论文研究的背景,参考山区跨越水库大跨桥梁现状及趋势,结合本项目桥梁自身特点从方案确定、结构设计计算及施工方案等方面进行分析研究。2、结合项目自身山区跨越水库大跨的特点采用变截面预应力混凝土连续刚构桥及中承式钢管混凝土桁架拱桥的方案进行充分的比选论证,最终确定采用连续刚构桥合理可行,可实施性好,满足实际需求,同时做好桥梁的细节及耐久性设计;3、采用Midas/Civil建立有限元模型对其内力进行结构受力仿真分析,包括桥梁上下部计算、局部细节计算及成桥稳定性计算等,确保桥梁构造及配筋合理。4、考虑到山区水库桥梁施工条件限制较多,存在施工空间狭窄、水深较深等问题,通过制定详细的施工方案,包括水中吊装、水中钻孔、承台施工、浮式栈桥等专项施工方案。施工方案需要经济合理,方便项目的最终实施完成。目前该桥已顺利合拢,验证了其方案设计、结构计算及施工方案合理可行,能推进项目的顺利实施。
王胜寒[4](2020)在《高速公路改扩建既有桥梁服役性能评价与分类利用技术研究》文中指出近三十年来,随着我国公路桥梁事业的迅猛发展,高速公路在我国交通运输中起到了重要的支撑作用。而如今却面临着车流量的增加、桥梁荷载等级的提高等诸多问题,导致在当时技术水平落后的情况下修建的高速桥梁已经不能满足当前人民对日益发展的高品质生活的迫切需求。因此,在役桥梁承载能力的降低、高速公路改扩建及桥梁再利用等问题使得旧桥服役性能的评价研究迫在眉睫。为此,本文开展了旧桥上部和单板的技术状况评定、室内外抗弯抗剪承载力破坏试验、Abaqus非线性有限元受力全过程仿真分析、梁板综合分类利用等研究。主要内容和成果如下:(1)本文系统全面的进行了桥梁上部总体、单板技术状况评定分析研究,分析了通过外观技术评定和耐久性特殊评定的方法,建立了既有梁板技术状况分类评价指标体系;分别进行基于设计规范、技术状况检算修正后的理论计算,为后续与实测值对比作理论基础。(2)为了获得梁板实际极限承载力,通过单板荷载试验进行既有桥梁承载力评定。开展了京沪高速10m、13m跨径,滨莱高速10m、16m跨径分别考虑整体化现浇层的拆除空心板抗弯、抗剪承载力室内外静载试验研究。对梁板抗弯、抗剪承载力试验结果进行挠度、应变分析,发现带有整体化现浇层的试验梁板能较好的满足当前规范要求。(3)采用Abaqus有限元软件对预应力混凝土梁建立数值模型,并按位移进行加载。在模拟试件受静力荷载的过程中,引入塑性损伤模型来模拟混凝土梁的损伤;并得出其损伤云图。研究结果表明,引入的塑性损伤模型能较好地显示混凝土梁的塑性损伤,梁的荷载-挠度曲线试验结果吻合良好。(4)按照“原状等效再利用(A类)”、“加固等效再利用(B类)”、“原状降低功能再利用(C类)”、“废弃梁板(D类)再利用”分类原则,建立既有梁板再利用分类标准,并开展相关技术研究并形成既有梁板综合利用技术,为同类改扩建桥梁合理利用旧桥梁板提供技术指导。
颜秉国[5](2020)在《高速公路改扩建中小跨径空心板梁剩余寿命研究》文中进行了进一步梳理我国高速公路始于上个世纪80年代末,由于当时经济水平限制和技术水平落后,在修建的高速公路、运营养护中存在着很多的不足。近几十年来,随着国家经济水平的快速发展,随之而来的交通运输量也不断持续增长,导致早期修建高速公路桥梁承受车辆荷载大大增加,使其结构损伤不断积累。在车辆反复荷载作用下,桥梁各部件的应力远低于屈服强度极限,很容易使桥梁发生破坏,桥梁寿命大大的低于设计寿命。因此,对高速公路改扩建中旧桥承载力能否满足改扩建后的荷载标准,以及旧桥拆除梁板的剩余寿命是多少,能否适应高速公路改扩建后的标准要求,是当今对于高速改扩建急需所解决的重要问题。本文以长余高速改扩建项目为依托背景,针对拆除旧桥空心板剩余承载力和疲劳寿命进行理论分析与试验研究,准确评估旧桥梁板剩余承载力和疲劳寿命。本文的主要研究结论如下:(1)开展既有桥梁梁板的技术状况调研,通过分析梁板技术状况影响因素,确定梁板技术状况关键检测指标,明确检测指标扣分标准,提出旧桥梁板技术状况快速评价体系。(2)对既有桥梁进行技术评价与分类,选出各类桥梁代表性的构件进行静力荷载试验,通过静力荷载试验结果与理论计算比较分析,建立了基于技术状况的梁板剩余承载力计算公式。(3)通过分析梁板耐久性状况影响因素,确定梁板耐久性状况关键检测指标,明确检测指标扣分标准,提出旧桥梁板耐久性状况评价体系,为综合评价拆除梁板耐久性状况提供科学依据。(4)考虑梁板耐久性状况,选取10米梁板进行等幅疲劳荷载试验,通过疲劳实验得出既有梁板的循环次数以及对应的应力幅值,考虑梁板耐久性状况,对梁板循环次数进行折减,并采用最小二乘法对S-N曲线进行回归拟合分析,建立基于了耐久性状况的疲劳寿命计算公式,准确评价梁板剩余疲劳寿命。
顾万[6](2020)在《混凝土空心板梁桥铰缝损伤演变规律及评估技术研究》文中提出预应力混凝土空心板梁桥作为典型的中小跨径桥梁,具有结构简单、装配方便等优势,被广泛应用于高速公路桥梁建设中。但受结构设计、施工工艺、服役环境等因素影响,早期建成的混凝土空心板梁桥已出现不同程度的病害损伤,铰缝作为板梁结构横向传力的关键构件,其性能的劣化会加剧板梁结构的不稳定性,研究铰缝损伤的劣化规律并探索一套科学合理的损伤评估体系,对于维系板梁结构尤其是铰缝的安全性、耐久性具有重大意义。本文对江苏省内部分高速公路混凝土空心板梁桥的病害进行调研,着重梳理了混凝土空心板梁桥典型病害的表现形式及作用机理,认为不同类型病害间具有一定的相互关联性,铰缝作为关键构件直接影响板梁桥的承载能力和横向传力效果。通过铰接板理论计算与实桥静载试验获取的板梁挠度变形进行对比分析,揭示了铰缝混凝土作为传力构件不单是简单的“铰”,更承受复杂的拉压剪多重影响。采用车辆超载、铰缝受损、钢筋锈蚀、支座脱空等劣化因素进行混凝土空心板梁桥多因素耦合劣化规律影响分析,主要考察了铰缝裂缝开展过程、铰缝底部沿纵向方向及截面轮廓应力分布、板梁挠度变形、相邻板梁间错台、开合等指标。认为铰缝的损伤主要是跨中处先产生开裂破坏,随着施加荷载的增大,裂缝逐渐向1/4跨和3/4跨对称延伸,直至形成铰缝贯通及板梁单板受力现象。相较于钢筋锈蚀和支座脱空,车辆超载和铰缝受损对于板梁结构尤其是铰缝性能的劣化影响更大,铰缝相邻两侧支座脱空对于梁端处铰缝受力影响最大。通过对比和分析缩尺梁在承载能力极限状态下时的破坏模式,设计并浇筑了 8米缩尺预应力混凝土空心板梁,分别进行了单梁及梁铰体系静力加载结构试验。从梁体破坏模式、裂缝开展过程、挠度变形、错台、开合、应变等指标进行归纳,总结混凝土空心板梁及铰缝结构在不同损伤阶段的劣化过程。在模拟和分析不同铰缝受损位置及长度下板梁结构横向分布影响线差异的基础上,提出了铰缝协同工作系数来表征铰缝受损等级(完好、轻微损伤、中等损伤、严重损伤、完全失效),采用铰缝损伤度、错台、开合、挠度比作为检测指标,建立铰缝损伤评估体系并应用于实桥验证。以铰缝混凝土损伤劣化模型为基础,对铰缝不同损伤程度下对应的年限进行了预估分析。本文研究成果可为高速公路混凝土空心板梁桥铰缝损伤检测、评估提供参考,具有一定的研究意义和应用价值。
李川[7](2020)在《简支空心板梁桥受力特征及病害处理技术》文中认为空心板梁桥是中小跨径桥梁使用最广泛的一种桥型,由于空心板梁桥数量大,导致出现了很多典型病害,主要包括空心板梁底裂缝、铰缝破损、桥面铺装纵向开裂,本论文主要针对这些病害进行统计、分析,阐述病害的特征及对病害原因进行分析。通过有限元分析原理计算桥面铺装参与空心板梁结构整体受力,分析超重货车及大件运输车对空心板梁的影响,分析并总结空心板梁桥常见病害的维修加固方案,主要研究内容及结论如下:1、阐述论文研究的背景、空心板梁结构发展史、各套空心板梁标准图结构构造的特点、空心板梁桥常见病害及结构受力性能研究现状。2、通过具体桥梁检测项目为背景,对桥梁分类统计,总结空心板梁桥常见病害及与这些统计对象的关系,同时阐述空心板梁桥的常见病害特征及对病害原因进行分析。3、研究桥面铺装、车辆荷载对空心板梁桥的受力性能影响,重点分析大件运输车辆对空心板梁桥的受力影响情况,主要包括大件运输特征的阐述、空心板梁桥安全储备的分析、空心板梁桥抗力计算、空心板梁桥在大件运输车辆荷载作用下承载能力的计算。进一步提出在大件运输车辆荷载作用下,空心板梁桥承载能力综合检算系数Z1的计算方法。4、通过空心板梁桥实际案例分析,阐述空心板梁桥常见病害的维修加固方案,重点对空心板梁底粘贴纵向钢板及碳纤维布进行加固计算、设计。研究加固方案对空心板梁桥受力性能的影响。
王子琛[8](2020)在《基于表观病害的空心板梁桥承载能力及耐久性评定方法研究》文中研究指明目前在我国公路桥梁项目中,存在着大量从早期开始运营的空心板梁桥。由于施工质量差、材料劣化、环境侵蚀等一系列因素的作用,空心板梁桥随桥梁服役时间的增长会产生不同种类不同程度的病害,这些病害会对桥梁结构产生不可逆的影响,危及桥梁的承载能力和耐久性。随着车载及车流量的不断增长,数量众多的带病害工作空心板梁桥结构会进一步给国家公路桥梁事业带来较大隐患。因此有必要深入研究空心板梁桥各类损伤形式对结构服役性能的影响,基于既有病害提出在役空心板梁桥承载能力与耐久性的科学评定方法。本文以合芜高速公路改扩建工程为依托,选取典型带表观病害空心板梁桥进行下列研究:首先,整理并归纳了空心板梁桥上部结构主要病害的表现形式与产生原因。通过定量调研依托工程中的空心板梁桥,分析包括“铰缝损伤”、“结构裂缝”、“支座病害”在内的表观病害特征,总结出空心板梁桥在长期服役后各类病害的分布规律。接着,为了对依托工程中具有典型病害的样本桥梁进行横向分布能力评定,设计了满足各类现场测量环境的荷载试验方案,并提出了衡量空心板梁桥横向分布能力的铰缝损伤程度评定指标。在进行实桥荷载实验后,通过对比无损状态下理论结果进行样本桥梁横向分布能力分析,而后基于理论和实测铰缝相对竖向位移,计算各铰缝的损伤程度评定指标,结合横向分布分析结果说明了铰缝损伤程度评定指标在定量评定桥梁横向分布能力中的合理性。其次,针对现有体系难以通过定量化结构内部情况进行耐久性评定的现状,基于空心板梁桥梁体解剖试验,结合层次分析法与模糊理论,提出了一种空心板梁桥梁体的耐久性评定体系。综合针对样本桥梁的梁体解剖与检测试验数据,从耐久性的角度应用层次分析法,对试验中诸多检测内容结果进行归纳分类,建立以耐久性评定为核心的递阶层次模型。运用模糊理论确定各层级模糊综合向量,最终得到以样本桥梁梁体断面为对象的安全性与耐久性评定指标。然后,为了解决无破坏试验情况下的极限承载能力评定问题,提出了通过材料劣化规律或已有检测数据推断服役空心板梁体极限承载能力与梁体极限承载能力折减系数的计算方法,利用现有文献中的单梁破坏试验数据验证了该方法的准确性。最后,构建了表观病害指标与荷载横向分布能力、耐久性或极限承载能力指标间的关联模型。选择合适的神经网络结构,将上述指标分别作为算法输入与输出进行神经网络训练,从而建立输入与输出之间的定量关系,并同时通过有限元模型更新的方式及时补充训练数据。选择桥梁工程实例进行关联模型的适用性验证。验证结果说明,经过训练后的关联模型建立的基于表观的评定体系是合理的,可用于实际工程中空心板梁桥承载能力与耐久性的评定。
张永强[9](2020)在《瓦厂坪大桥病害特征分析与采空区的影响研究》文中进行了进一步梳理桥梁是跨越山区的主要交通形式,对于地表变形移动十分敏感。而目前我国有很多桥梁段需穿越山区煤炭赋存区,地下采煤形成的采空区所引起的地表移动变形很容易达到或者超过公路桥梁的最大允许变形值,从而对桥梁结构变形产生影响,严重影响桥梁的安全运行。本文以西南某采空区上方雅西高速瓦厂坪桥梁段为例,通过现场调查,掌握桥梁变形破坏迹象,运用先进的自动化监测设施,从时间和空间上分析采空区上覆桥梁的变形破坏特征和变形趋势,总结归纳采空区桥梁段病害特征。从采空区这一根本原因着手,采用概率积分法对采空区地表变形指标值进行了预计分析,并通过数值模拟研究了采空区对桥梁沿线地表的影响演化过程,最后对桥梁的变形处治提出了相关建议。通过以上研究得到:1、通过现场调查,掌握了桥梁变形破坏迹象,主要表现为桥梁不均匀沉降、墩柱及连梁开裂变形、路基路面开裂、防撞护栏开裂、伸缩缝挤压或拉伸变形等。2、开展桥梁沉降观测、裂缝监测、倾斜监测等,从多角度分析了桥梁变形特征和变形趋势,为桥梁技术状况评定和变形处治提供了依据。3、采用理论计算,对采空区沿线地表变形指标值进行了预计分析,参照相关规范,以此对沿线场地稳定性和桥梁变形影响作出了评价。4、结合数值模拟手段,研究表明2017年形成的采空区是该区域产生地表移动,引发桥梁变形的主要因素。5、借鉴总结采空区公路桥梁治理措施,从桥梁地基加固、桥梁结构加固、采空区保护煤柱等方面对该类工程问题提出了措施与建议。
杨棚[10](2020)在《云南省农村公路水毁灾害分析及对策研究》文中研究指明云南省位于我国西南地区,与缅甸、越南、老挝等东南亚国家接壤,地貌类型以高原山地、丘陵为主,相对平缓的山区只占总面积10%,大面积土地高低差参,纵横起伏,一定范围又有和缓的高原面。云南省内的农村公路受建设经费、地形地貌、水文气象等多种条件的制约,其路线又多是围绕山地、丘陵、河流布置,因此云南地区农村公路多是陡坡急弯、半填半挖路基、等级较低、抗水毁能力差,受降雨量影响大时常发生水毁灾害。云南农村公路抗水灾差的特点,阻碍云南广大农村的发展及运输,农村公路的水毁会给当地居民造成出行不便、交通运输受阻等影响,还会对当地乡镇经济发展造成巨大的障碍;因此保障云南山区农村公路畅通,研究其抗水毁措施,成为发展云南交通事业的当务之急。本文对云南省农村公路水毁展开实地调研并对云南省内近几年的农村公路水毁资料进行统计归类,按照省内农村公路水毁的特征、机理及损毁结构,对云南省农村公路水毁进行分类,即路基水毁、边坡水毁失稳、泥石流灾害、路面水毁、挡土墙水毁、排水设施水毁、桥梁工程水毁、防护工程水毁等八大类。以云南省内较典型、较严重的农村公路水毁案例为背景,并结合云南地区独特的地质地貌、气候、水文状况及云南省农村公路常用建筑构造、材料等,分析云南省内农村公路八类水毁的主要因素及形成水毁灾害的机理。利用现有文献中农村公路水毁研究所取得的成果,收集、整理我国其他省份类似水毁灾害类型的预防及治理措施,如陕西、浙江、西藏等省份抗水灾经验,将其与云南省农村公路实际情况相结合,提出适用于云南省农村公路水毁灾害的防治对策,以此促进云南省内农村公路的发展,增强防护能力减少农村公路水毁对云南省经济社会造成的损失。
二、高速公路桥梁梁板裂缝的诱发原因及处理方法(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、高速公路桥梁梁板裂缝的诱发原因及处理方法(论文提纲范文)
(1)中小跨径桥梁智能安全风险等级评价及养护措施研究(论文提纲范文)
摘要 |
abstract |
1 绪论 |
1.1 研究背景与意义 |
1.2 研究现状 |
1.2.1 国外研究现状 |
1.2.2 国内研究现状 |
1.3 桥梁安全风险评价目前存在的问题 |
1.4 研究内容与研究方法 |
1.4.1 研究内容 |
1.4.2 研究方法 |
1.5 技术路线 |
2 中小跨径桥梁病害及其特征分析 |
2.1 中小跨径桥梁病害分类 |
2.2 中小跨径桥梁常见病害分析 |
2.2.1 混凝土裂缝 |
2.2.2 钢筋锈蚀 |
2.2.3 桥梁单板受力病害 |
2.2.4 铰缝病害 |
2.2.5 支座损坏 |
2.3 中小跨径桥梁病害统计 |
2.4 本章小结 |
3 桥梁安全风险评价体系样本研究 |
3.1 在役桥梁安全风险评价基本体系要求 |
3.2 FAHP在桥梁安全风险评价问题应用 |
3.2.1 模糊层次分析权重建立 |
3.2.2 基于模糊层次分析的评价体系构建 |
3.3 样本来源及样本集构建 |
3.3.1 检测报告样本数据提取 |
3.3.2 基于FAHP样本数据推理 |
3.3.3 样本集构建 |
3.4 桥梁安全风险评价体系样本合理性研究 |
3.4.1 桥梁病害概率分布 |
3.4.2 样本数据合理性研究 |
3.5 本章小结 |
4 中小跨径桥梁安全风险评价系统构建 |
4.1 智能算法思想借鉴与应用 |
4.1.1 神经网络对安全评价模型构建启发 |
4.1.2 专家系统对养护模型构建的启发 |
4.1.3 神经网络专家系统融合模式 |
4.2 卷积神经网络的基本结构 |
4.3 全信息知识库建立 |
4.3.1 知识来源 |
4.3.2 知识分类 |
4.3.3 知识的表达方式 |
4.3.4 知识库组成 |
4.3.5 养护规则集的构建 |
4.4 风险评价系统的模型构建 |
4.4.1 模型基本框架设计 |
4.4.2 风险评价模型构建 |
4.4.3 卷积神经网络超参数训练 |
4.4.4 养护模型构建 |
4.4.5 智能评价系统的解释机制 |
4.4.6 网络训练结果分析 |
4.5 基于MATLAB平台的桥梁安全风险评价系统开发 |
4.5.1 系统开发环境级 |
4.5.2 系统开发工具 |
4.5.3 系统设计原则 |
4.5.4 系统框架设计 |
4.6 系统的模块构建 |
4.6.1 系统的登录界面 |
4.6.2 桥梁概况模块 |
4.6.3 风险评价模块 |
4.6.4 养护分析模块 |
4.7 本章小结 |
5 实例应用 |
5.1 桥梁概况 |
5.2 桥梁检测及数据处理 |
5.2.1 桥面系检测结果 |
5.2.2 上部结构检测结果 |
5.2.3 下部结构检测结果 |
5.2.4 桥梁检测数据处理 |
5.3 中小跨径桥梁安全风险评价系统应用 |
5.4 病害原因分析及养护建议 |
5.4.1 病害原因分析 |
5.4.2 养护措施 |
5.5 本章小结 |
6 结论与展望 |
6.1 结论 |
6.2 展望 |
致谢 |
参考文献 |
附录 |
攻读硕士学位期间主要成果 |
(2)在役RC肋梁桥桥面板疲劳性能与维护规划方法研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 研究背景及意义 |
1.1.1 研究背景 |
1.1.2 研究意义 |
1.2 国内外研究现状 |
1.2.1 钢筋混凝土桥面板疲劳性能研究 |
1.2.2 钢筋混凝土桥面板疲劳加固研究 |
1.2.3 钢筋混凝土桥面板维护规划研究 |
1.2.4 当前RC肋梁桥桥面板疲劳性能研究与加固研究存在的不足 |
1.3 本文研究内容及技术路线 |
2 在役RC肋梁桥桥面板破坏形态及评价体系 |
2.1 引言 |
2.2 疲劳破坏形态调查 |
2.2.1 调查状况 |
2.2.2 特征统计 |
2.2.3 典型旧桥桥面板疲劳问题的实态检测 |
2.2.4 桥面板典型破坏成因分析 |
2.3 在役桥梁疲劳损伤的评价体系 |
2.3.1 国内外桥面板损伤的等级划分 |
2.3.2 国内外桥面板疲劳损伤的判定基准 |
2.3.3 我国在役RC肋梁桥桥面板疲劳评价体系的趋向 |
2.4 本章小结 |
3 RC肋梁桥桥面板疲劳性能研究 |
3.1 引言 |
3.2 疲劳性能试验 |
3.2.1 试验方案 |
3.2.2 试验现象描述 |
3.2.3 试验结果分析 |
3.3 疲劳模拟分析 |
3.3.1 有限元模型建立 |
3.3.2 桥面板疲劳性能分析 |
3.4 本章小结 |
4 RC肋梁桥桥面板疲劳加固性能研究 |
4.1 引言 |
4.2 试验方案 |
4.2.1 RC肋梁桥桥面板加固方法的选取 |
4.2.2 试验梁设计 |
4.2.3 试验工况 |
4.2.4 试验装置与加载方法 |
4.2.5 测试内容与测点布置 |
4.3 试验现象与结果分析 |
4.3.1 静载试验桥面板破坏模式 |
4.3.2 疲劳试验桥面板破坏模式与破坏机理 |
4.3.3 疲劳荷载作用下裂缝发展规律 |
4.3.4 疲劳荷载作用下应变变化规律 |
4.3.5 疲劳荷载作用下挠度发展及疲劳退化规律 |
4.3.6 疲劳加固对桥面板使用寿命的影响 |
4.3.7 疲劳加固下桥面板S-N曲线探讨 |
4.3.8 桥面板适宜的疲劳加固方法探讨 |
4.4 本章小结 |
5 基于静力性能的RC肋梁桥桥面板CFRP布补强方法 |
5.1 引言 |
5.2 试验方案 |
5.2.1 CFRP布锚固试验设计 |
5.2.2 CFRP布-桥面铺装界面粘结试验设计 |
5.3 试验结果分析 |
5.3.1 CFRP布锚固试验结果分析 |
5.3.2 CFRP布-桥面铺装界面粘结结果分析 |
5.4 补强理论探讨 |
5.4.1 CFRP布锚固理论 |
5.4.2 CFRP布-桥面铺装界面粘结理论 |
5.5 本章小结 |
6 在役RC肋梁桥桥面板疲劳的维护规划模型 |
6.1 引言 |
6.2 模型的规划基础 |
6.2.1 折衷规划 |
6.2.2 失效树规划 |
6.2.3 设备维修规划 |
6.3 模型的建立与应用 |
6.3.1 模型的建立 |
6.3.2 模型的应用 |
6.4 模型的可靠性分析 |
6.5 本章小结 |
结论 |
主要结论 |
本文创新点如下 |
值得进一步研究的问题 |
参考文献 |
附录 |
攻读学位期间发表的学术论文 |
致谢 |
个人简历 |
(3)某山区跨越水库桥梁设计与施工研究(论文提纲范文)
致谢 |
中文摘要 |
英文摘要 |
1 绪论 |
1.1 研究背景 |
1.2 山区跨越水库桥梁研究现状及趋势 |
1.3 桥梁工程概况 |
1.4 主要研究内容 |
2 山区跨越水库桥梁设计研究 |
2.1 山区跨越水库桥梁设计难点 |
2.2 项目自然地理条件 |
2.3 路线方案论证确定 |
2.4 桥型方案的确定 |
2.5 水库大桥下部细节设计 |
2.6 混凝土结构耐久性设计 |
2.7 本章小结 |
3 桥梁结构受力分析 |
3.1 概述 |
3.2 上部整体计算 |
3.3 后张预应力锚固区计算 |
3.4 成桥阶段稳定计算 |
3.5 薄壁主墩计算 |
3.6 刚构梁预拱度及桥梁监控 |
3.7 本章小结 |
4 桥梁施工方案研究 |
4.1 山区跨越水库桥梁施工难点 |
4.2 水上吊装作业施工方案研究 |
4.3 水中钻孔桩施工方案研究 |
4.4 承台工程施工方案研究 |
4.5 墩身工程施工方案 |
4.6 浮式栈桥 |
4.7 箱梁梁段悬臂施工方案 |
4.8 变截面箱梁0号块施工方案 |
4.9 本章小结 |
5 结论与展望 |
5.1 主要结论 |
5.2 需要进一步研究的问题 |
附录 |
参考文献 |
作者简历 |
(4)高速公路改扩建既有桥梁服役性能评价与分类利用技术研究(论文提纲范文)
摘要 |
ABSTRACT |
1 绪论 |
1.1 研究背景与意义 |
1.2 早期高速公路存在的问题与缺陷 |
1.3 国内外研究现状 |
1.3.1 理论研究方面 |
1.3.2 工程应用方面 |
1.4 发展趋势 |
1.5 研究内容 |
2 既有桥梁技术状况评定 |
2.1 旧桥承载能力评定方法 |
2.1.1 基于外观调查分析法 |
2.1.2 基于专家经验方法 |
2.1.3 现场荷载试验方法 |
2.1.4 基于设计规范的方法 |
2.1.5 基于结构可靠性理论的方法 |
2.2 工程概况 |
2.3 技术状况评定 |
2.3.1 旧桥总体技术状况检测评定 |
2.3.2 单板技术状况检测评定 |
2.4 桥梁承载力评定 |
2.4.1 基于设计规范承载力评价 |
2.4.2 预应力空心板承载能力理论 |
2.4.3 基于技术状况检算承载力评价 |
2.5 本章小结 |
3 既有梁板承载力试验与评定 |
3.1 结构有限元分析 |
3.1.1 有限元分析理论 |
3.1.2 Abaqus介绍 |
3.1.3 单元选择及材料类型 |
3.1.4 模型建立 |
3.2 拆除空心板抗弯承载力试验研究 |
3.2.1 试验目的 |
3.2.2 试验方案设计 |
3.2.3 抗弯试验现象描述 |
3.2.4 弯矩-跨中挠度曲线对比分析 |
3.2.5 荷载-跨中挠度曲线分析 |
3.2.6 荷载-跨中应变曲线分析 |
3.3 拆除空心板抗剪承载力试验研究 |
3.3.1 试验目的 |
3.3.2 试验方案设计 |
3.3.3 抗剪试验现象描述 |
3.3.4 剪力-挠度曲线分析 |
3.3.5 剪压区剪力-主应变曲线分析 |
3.4 有限元结果对比及分析 |
3.4.1 抗弯承载力有限元对比分析 |
3.4.2 抗剪承载力有限元对比分析 |
3.5承载能力检算系数Z2 |
3.6 本章小结 |
4 既有桥梁综合利用技术 |
4.1 既有桥梁利用现状分析 |
4.2 既有梁板分类 |
4.3 综合利用准则 |
4.4 综合利用措施 |
4.4.1 等效原状利用 |
4.4.2 加固原位利用 |
4.4.3 加固降低等级利用 |
4.4.4 拆除破碎利用 |
4.5 工程建议 |
4.6 既有桥梁(梁板)破碎再利用 |
4.6.1 破碎工艺及再生集料状况 |
4.6.2 目标配合比设计 |
4.6.3 7d无侧限抗压强度测定 |
4.6.4 水泥剂量标准曲线确定 |
4.6.5 结论 |
4.7 本章小结 |
5 结论与展望 |
5.1 结论 |
5.2 创新点及展望 |
参考文献 |
致谢 |
在校期间主要科研成果 |
(5)高速公路改扩建中小跨径空心板梁剩余寿命研究(论文提纲范文)
摘要 |
ABSTRACT |
1 绪论 |
1.1 研究背景和意义 |
1.2 国内外研究状况 |
1.3 主要研究内容以及目的 |
1.3.1 主要研究内容 |
1.3.2 研究目的 |
2 基于技术状况的剩余承载力评定 |
2.1 旧桥梁板评价方案 |
2.1.1 梁板技术状况评价体系 |
2.1.2 现场检测试验方案 |
2.1.3 梁板病害检测 |
2.2 拆除梁板承载力理论计算 |
2.2.1 基于桥梁设计规范的承载力检算 |
2.2.2 基于桥梁承载力检测评定规程的承载力检算 |
2.2.3 承载力能力检算 |
2.3 拆除梁板承载力的数值分析 |
2.4 荷载试验 |
2.4.1 现场荷载试验 |
2.4.2 室内荷载试验 |
2.5 建立基于技术状况的梁板剩余抗弯承载力计算模型 |
2.6 本章小结 |
3 梁板耐久性状况评定研究 |
3.1 耐久性评定方案 |
3.1.1 耐久性状况检测指标分析 |
3.1.2 梁体耐久性检测指标要求 |
3.2 梁板耐久性状况评价体系 |
3.3 试验梁板耐久性状况评价 |
3.3.1 试验梁板耐久性指标检测结果 |
3.3.2 试验梁板耐久状况评定结果 |
3.4 小结 |
4 基于耐久性状况的梁板剩余疲劳寿命试验研究 |
4.1 钢筋混凝土空心板疲劳试验 |
4.1.1 试验依据 |
4.1.2 试验内容 |
4.1.3 试验结果分析 |
4.2 基于ABAQUS数值分析 |
4.2.1 选择建模方式 |
4.2.2 单元以及材料类型的选择 |
4.2.3 建立模型与施加约束及荷载 |
4.2.4 网格的划分 |
4.2.5 求解 |
4.3 结果分析 |
4.3.1 应变分析 |
4.3.2 梁底板跨中挠度分析 |
4.4 建立基于耐久性状况的剩余疲劳寿命计算模型 |
4.5 本章小结 |
5 创新点 |
6 结论与展望 |
6.1 本文结论 |
6.2 展望 |
参考文献 |
致谢 |
在校期间主要科研成果 |
(6)混凝土空心板梁桥铰缝损伤演变规律及评估技术研究(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 研究目的和意义 |
1.2 国内外研究现状 |
1.2.1 板梁构件劣化有限元数值模拟分析 |
1.2.2 混凝土空心板梁构件结构试验研究 |
1.2.3 铰缝损伤检测及损伤程度判定研究 |
1.3 研究内容及技术路线 |
1.3.1 主要研究内容 |
1.3.2 技术路线 |
1.4 课题来源 |
第二章 混凝土空心板梁桥典型病害及结构计算理论 |
2.1 混凝土空心板梁桥典型病害 |
2.1.1 板梁横向裂缝 |
2.1.2 板梁纵向裂缝 |
2.1.3 腹板斜裂缝 |
2.1.4 支座脱空与变形 |
2.1.5 铰缝受损 |
2.1.6 典型病害内在关联分析 |
2.2 铰接板理论 |
2.2.1 铰接板理论的基本假定 |
2.2.2 铰接板的荷载横向分布计算 |
2.3 铰缝板理论在实桥中的检验 |
2.3.1 现场荷载试验概况 |
2.3.2 现场荷载试验结果分析 |
2.3.3 基于现场试验的铰缝受力分析 |
2.4 本章小结 |
第三章 混凝土空心板梁桥结构损伤有限元数值模拟 |
3.1 有限元模型建立 |
3.1.1 梁铰体系模型 |
3.1.2 本构关系 |
3.1.3 界面接触参数 |
3.2 车辆超载对空心板梁桥结构性能劣化影响分析 |
3.2.1 铰缝开裂变化 |
3.2.2 铰缝内力变化 |
3.2.3 挠度-错台-开合指标变化 |
3.3 铰缝受损与车辆超载耦合对空心板梁桥结构性能劣化影响分析 |
3.3.1 铰缝开裂变化 |
3.3.2 铰缝内力变化 |
3.3.3 挠度-错台-开合指标变化 |
3.4 钢筋锈蚀与车辆超载耦合对空心板梁桥结构性能劣化影响分析 |
3.4.1 铰缝开裂变化 |
3.4.2 铰缝内力变化 |
3.4.3 挠度-错台-开合指标变化 |
3.5 支座脱空与车辆超载耦合对空心板梁桥结构性能劣化影响分析 |
3.5.1 铰缝开裂变化 |
3.5.2 铰缝内力变化 |
3.5.3 支座内力变化 |
3.5.4 挠度-错台-开合指标变化 |
3.6 本章小结 |
第四章 预应力混凝土空心板梁结构试验 |
4.1 混凝土板梁结构参数及试验方案设计 |
4.1.1 板梁结构参数设计 |
4.1.2 缩尺梁与原型梁有限元模拟校验 |
4.1.3 板梁结构试验方案 |
4.2 单梁静载试验 |
4.2.1 裂缝开展情况 |
4.2.2 荷载-位移曲线 |
4.2.3 荷载-应变曲线 |
4.3 板梁-铰缝-支座体系静载试验 |
4.3.1 裂缝开展情况 |
4.3.2 荷载-位移曲线 |
4.3.3 荷载-错台曲线 |
4.3.4 荷载-开合曲线 |
4.3.5 荷载-应变曲线 |
4.4 基于室内试验的板梁及铰缝损伤劣化研究 |
4.4.1 板梁损伤劣化规律 |
4.4.2 铰缝损伤劣化规律 |
4.5 本章小结 |
第五章 空心板梁桥结构损伤规律及评估技术研究 |
5.1 铰缝受损有限元模型建立 |
5.2 铰缝受损横向分布影响线变化规律 |
5.2.1 板梁横向分布影响线分析 |
5.2.2 铰缝协同工作系数定义 |
5.2.3 铰缝损伤等级划分 |
5.3 铰缝性能劣化评估技术分析 |
5.3.1 评估指标的确定 |
5.3.2 评估体系的建立 |
5.3.3 铰缝检测方案的应用 |
5.4 铰缝受损全生命周期劣化模型研究 |
5.4.1 混凝土结构劣化模型 |
5.4.2 铰缝混凝土劣化模型 |
5.4.3 铰缝服役年限预估分析 |
5.5 本章小结 |
第六章 结论与展望 |
6.1 主要研究结论 |
6.2 创新点 |
6.3 不足与展望 |
参考文献 |
致谢 |
个人简介 |
攻读学位期间取得的科研成果 |
(7)简支空心板梁桥受力特征及病害处理技术(论文提纲范文)
致谢 |
摘要 |
Abstract |
第1章 绪论 |
1.1 研究背景 |
1.2 简支空心板梁桥研究现状 |
1.2.1 国内空心板梁结构发展历史 |
1.2.2 国内简支空心板梁病害研究现状 |
1.2.3 国内简支空心板梁桥结构受力性能研究现状 |
1.2.4 国外简支空心板梁桥研究现状 |
1.3 本文研究的内容 |
第2章 常见病害特征及其原因分析 |
2.1 概述 |
2.2 桥梁分类统计 |
2.2.1 桥梁按结构形式分类 |
2.2.2 桥梁按全长及跨径分类 |
2.2.3 桥梁按技术状况评定等级分类 |
2.2.4 桥梁按路线分类 |
2.2.5 桥梁按修建时间分类 |
2.2.6 桥梁按病害分类 |
2.3 桥梁实际案例病害特征及原因分析 |
2.3.1 东蜀山桥实际案例分析 |
2.3.2 东岙桥实际案例分析 |
2.3.3 塘下金互通立交桥实际案例分析 |
2.4 本章小结 |
第3章 简支空心板梁桥受力性能影响分析 |
3.1 概述 |
3.2 荷载横向分布系数影响分析 |
3.2.1 铰接板法计算荷载横向分布系数 |
3.2.2 梁格法计算荷载横向分布系数 |
3.3 桥面铺装对简支空心板梁桥受力性能影响分析 |
3.3.1 桥面铺装对梁板挠度的影响分析 |
3.3.2 桥面铺装对梁板应力的影响分析 |
3.3.3 桥面铺装厚度对简支空心板梁受力的影响分析 |
3.3.4 桥面铺装强度对简支空心板梁受力的影响分析 |
3.4 车辆荷载对简支空心板梁桥受力性能影响分析 |
3.4.1 普通超重车辆对简支空心板梁桥受力性能影响分析 |
3.4.2 大件运输车辆对简支空心板梁桥受力性能影响分析 |
3.4.3 简支空心板梁桥极限车辆荷载的受力分析 |
3.5 简支空心板梁桥在大件运输车辆荷载作用下承载能力评定的影响分析 |
3.5.1 大件运输的特征 |
3.5.2 简支空心板梁桥承载能力安全储备的分析 |
3.5.3 简支空心板梁桥在大件运输车辆荷载作用下抗力影响分析 |
3.6 本章小结 |
第4章 简支空心板梁桥维修加固分析 |
4.1 概述 |
4.2 简支空心板梁桥常见病害预防措施及维修加固方案 |
4.2.1 简支空心板梁桥常见病害的预防措施 |
4.2.2 简支空心板梁开裂加固方案 |
4.2.3 铰缝破损加固方案 |
4.2.4 桥面铺装纵向开裂加固方案 |
4.3 简支空心板梁桥实际案例加固方案 |
4.3.1 维修、加固设计内容 |
4.3.2 简支空心板梁桥加固设计计算分析 |
4.3.3 简支空心板梁桥详细加固设计 |
4.3.4 维修加固过程中关键性技术问题 |
4.4 本章小结 |
第5章 结论与展望 |
5.1 主要工作及结论 |
5.2 创新点 |
5.3 有待进一步研究的问题 |
参考文献 |
作者简历 |
(8)基于表观病害的空心板梁桥承载能力及耐久性评定方法研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 研究背景与意义 |
1.2 空心板梁桥发展状况 |
1.3 桥梁评定体系研究现状 |
1.3.1 桥梁承载能力评定方法 |
1.3.2 桥梁耐久性评定方法 |
1.4 主要研究内容 |
第二章 空心板梁桥病害现场调研与分析 |
2.1 空心板梁桥铰缝典型病害及特征 |
2.1.1 铰缝典型病害 |
2.1.2 铰缝病害产生原因 |
2.2 空心板梁桥底板典型病害及特征 |
2.2.1 底板典型病害 |
2.2.2 底板病害产生原因 |
2.3 依托工程病害调查数据分析 |
2.3.1 空心板梁桥总体病害特征 |
2.3.2 空心板梁桥病害分布特征 |
2.4 本章小结 |
第三章 空心板梁桥荷载试验与横向分布能力分析 |
3.1 理论分析与荷载试验 |
3.1.1 理论分析手段 |
3.1.2 荷载试验方案 |
3.2 待测桥梁样本现场试验 |
3.2.1 样本概况 |
3.2.2 试验方案 |
3.2.3 试验结果 |
3.3 铰缝荷载横向传递能力评定 |
3.3.1 铰缝损伤程度评定方法现状 |
3.3.2 铰缝损伤程度评定指标 |
3.3.3 待测桥梁评定结果 |
3.4 本章小结 |
第四章 空心板梁桥解剖试验与耐久性分析 |
4.1 解剖试验方案与检测方法 |
4.1.1 解剖样本介绍 |
4.1.2 解剖方案 |
4.1.3 检测方案 |
4.1.4 评定标准与结果汇总 |
4.2 基于层次分析法及模糊综合理论的耐久性评定 |
4.2.1 层次分析法 |
4.2.2 模糊综合评定 |
4.3 依托工程综合评定方法应用 |
4.3.1 试验样本 |
4.3.2 耐久性调查细则 |
4.3.3 耐久性评定结果 |
4.4 本章小结 |
第五章 空心板梁桥单梁破坏试验与极限承载能力分析 |
5.1 计算原理 |
5.2 折减系数的选取 |
5.3 折减系数在极限承载能力中的应用 |
5.4 实际工程验证 |
5.5 依托工程极限承载能力折减系数计算 |
5.5.1 样本介绍 |
5.5.2 计算结果 |
5.6 本章小结 |
第六章 表观病害与承载能力及耐久性评定指标的关联分析 |
6.1 关联分析相关方法 |
6.1.1 神经元模型 |
6.1.2 BP神经网络结构 |
6.1.3 BP神经网络算法 |
6.2 神经网络评定系统基本信息 |
6.2.1 神经网络模型结构 |
6.2.2 神经网络模型参数选择 |
6.3 基于有限元更新的数据补充 |
6.3.1 梁格法建模 |
6.3.2 表观病害模拟与病害随机补充 |
6.3.3 模拟样本汇总 |
6.4 神经网络评定系统训练 |
6.4.1 “表观病害—荷载横向分布能力”关联分析 |
6.4.2 “表观病害—耐久性”关联分析 |
6.4.3 “表观病害—梁体极限承载能力”关联分析 |
6.5 实桥承载能力及耐久性的评定验证 |
6.5.1 工程概况 |
6.5.2 荷载横向分布评定结果 |
6.5.3 耐久性评定结果 |
6.5.4 极限承载能力评定结果 |
6.5.5 基于表观病害的评定验证 |
6.6 本章小结 |
第七章 结论与展望 |
7.1 结论 |
7.2 展望 |
致谢 |
参考文献 |
作者简介 |
(9)瓦厂坪大桥病害特征分析与采空区的影响研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 选题依据及研究意义 |
1.2 国内外研究现状 |
1.2.1 采空区地表沉陷规律研究 |
1.2.2 采空区地基稳定性研究现状 |
1.2.3 桥梁受采动影响变形机制与控制措施研究 |
1.3 研究内容及技术路线 |
1.3.1 主要研究内容 |
1.3.2 研究思路及技术路线 |
第2章 工程地质环境条件 |
2.1 自然地理概况 |
2.1.1 地理位置及交通 |
2.1.2 气象水文 |
2.2 区域地质与地震 |
2.2.1 区域构造 |
2.2.2 区域地层 |
2.2.3 地震 |
2.3 基本工程地质条件 |
2.3.1 地形地貌 |
2.3.2 地层岩性 |
2.3.3 地质构造 |
2.3.4 水文地质条件 |
2.4 煤层赋存及采空区概况 |
2.4.1 煤层赋存状况 |
2.4.2 采空区分布概况 |
2.5 人类工程活动 |
2.5.1 煤层开采现状 |
2.5.2 瓦厂坪大桥概况 |
2.5.3 采空区与公路空间位置关系 |
第3章 瓦厂坪大桥病害调查及原因分析 |
3.1 墩柱及系梁病害 |
3.1.1 6-1 墩柱及系梁裂缝 |
3.1.2 6-2 墩柱及系梁裂缝 |
3.1.3 6-3 墩柱裂缝 |
3.1.4 6-4 墩柱裂缝 |
3.1.5 7-4 墩柱裂缝 |
3.2 桥(路)面及护栏病害 |
3.2.1 桥面伸缩缝变形 |
3.2.2 路面开裂 |
3.2.3 护栏裂缝 |
3.3 其他构件病害 |
3.4 桥梁病害成因及风险分析 |
3.4.1 病害产生的原因 |
3.4.2 诱发病害的影响因素 |
3.4.3 桥梁主要风险分析 |
第4章 桥梁变形监测分析 |
4.1 桥梁变形监测方案概述 |
4.2 桥梁沉降变形监测分析 |
4.2.1 空间特征分析 |
4.2.2 时间特征分析 |
4.3 桥面裂缝开合度监测分析 |
4.3.1 4#桥墩断面 |
4.3.2 5#桥墩断面 |
4.3.3 6#桥墩断面 |
4.3.4 7#桥墩断面 |
4.4 墩柱裂缝开合度监测分析 |
4.4.1 5#桥墩墩柱 |
4.4.2 6#桥墩墩柱 |
4.4.3 7#桥墩墩柱 |
4.5 梁板相对位移监测分析 |
4.5.1 5#桥墩梁板位移 |
4.5.2 6#桥墩梁板位移 |
4.5.3 7#桥墩梁板位移 |
4.6 墩柱倾斜监测分析 |
4.7 桥梁结构对沉降变形响应特征分析 |
第5章 采空区桥梁沿线地表变形计算及影响研究 |
5.1 地表移动基本规律 |
5.2 地表移动变形预计 |
5.2.1 概率积分法概述 |
5.2.2 计算模型的建立 |
5.2.3 预计参数的选取 |
5.2.4 变形指标值计算 |
5.3 地表移动变形对桥梁的影响分析 |
5.3.1 沉降量对桥梁的影响 |
5.3.2 水平移动对桥梁的影响 |
5.3.3 倾斜变形对桥梁的影响 |
5.3.4 曲率变形对桥梁的影响 |
5.3.5 水平变形对桥梁的影响 |
第6章 采空区对桥梁线路影响数值模拟研究 |
6.1 概述 |
6.2 数值模拟计算模型 |
6.2.1 计算模型建立 |
6.2.2 边界条件与计算参数 |
6.2.3 地下开采过程概化及监测点的选择 |
6.3 数值模拟结果分析 |
6.3.1 沉降分析 |
6.3.2 x向水平位移分析 |
6.3.3 y向水平位移分析 |
6.4 理论计算与数值模拟对比分析 |
第7章 瓦厂坪大桥变形控制措施建议 |
7.1 目前桥梁技术状况评定 |
7.2 病害路段处治建议 |
7.2.1 治理范围分析 |
7.2.2 采空区桥基加固 |
7.2.3 桥梁结构加固 |
7.3 .瓦厂坪大桥沿线限采范围研究 |
结论 |
致谢 |
参考文献 |
攻读学位期间取得学术成果 |
附录 |
(10)云南省农村公路水毁灾害分析及对策研究(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 研究背景 |
1.2 国内外研究现状 |
1.3 本文研究目的、内容及分析导图 |
1.4 本文创新之处 |
第二章 云南省自然环境条件及其农村公路水毁调查 |
2.1 云南省自然环境条件 |
2.2 云南省自然环境条件对农村公路稳定性的影响 |
2.3 云南省农村公路水毁调查 |
2.4 红河州农村公路水毁调查 |
2.5 大理市农村公路水毁调查 |
2.6 丽江市农村公路水毁调查 |
2.7 文山州农村公路水毁调查 |
2.8 怒江州农村公路水毁调查 |
2.9 本章小结 |
第三章 云南省农村公路水毁灾害机理分析 |
3.1 路基水毁灾害机理分析 |
3.2 边坡水毁灾害机理分析 |
3.3 泥石流灾害 |
3.4 路面水毁灾害机理分析 |
3.5 挡土墙水毁灾害机理分析 |
3.6 排水设施水毁灾害机理分析 |
3.7 桥梁水毁灾害机理分析 |
3.8 防护工程水毁机理 |
3.9 本章小结 |
第四章 云南省农村公路水毁灾害评价 |
4.1 云南省农村公路宏观水毁因子分析及其量化研究 |
4.2 基于灰色关联理论的云南省农村公路水毁评价模型研究 |
4.3 模型评价等级划分研究 |
4.4 评价实例 |
4.5 本章小结 |
第五章 云南省农村公路水毁灾害防治对策研究 |
5.1 路基水毁防治对策 |
5.2 边坡水毁防治对策 |
5.3 泥石流防治对策 |
5.4 路面水毁防治对策 |
5.5 挡土墙水毁防治对策 |
5.6 排水设施水毁防治对策 |
5.7 桥梁工程水毁防治对策 |
5.8 防护工程水毁防治对策 |
5.9 本章小结 |
第六章 水毁防治工程应用实例 |
6.1 文山州农村公路水毁治理 |
6.2 大理市农村公路水毁治理 |
6.3 怒江州农村公路水毁治理 |
6.4 丽江市农村公路水毁治理 |
6.5 本章小结 |
第七章 结论与展望 |
7.1 结论 |
7.2 展望 |
致谢 |
参考文献 |
附录 A(攻读学位其间发表论文与参加课题目录) |
四、高速公路桥梁梁板裂缝的诱发原因及处理方法(论文参考文献)
- [1]中小跨径桥梁智能安全风险等级评价及养护措施研究[D]. 王冰. 西安理工大学, 2021(01)
- [2]在役RC肋梁桥桥面板疲劳性能与维护规划方法研究[D]. 田帅. 东北林业大学, 2020(09)
- [3]某山区跨越水库桥梁设计与施工研究[D]. 郭皆焕. 浙江大学, 2020(01)
- [4]高速公路改扩建既有桥梁服役性能评价与分类利用技术研究[D]. 王胜寒. 山东交通学院, 2020(04)
- [5]高速公路改扩建中小跨径空心板梁剩余寿命研究[D]. 颜秉国. 山东交通学院, 2020(04)
- [6]混凝土空心板梁桥铰缝损伤演变规律及评估技术研究[D]. 顾万. 扬州大学, 2020(04)
- [7]简支空心板梁桥受力特征及病害处理技术[D]. 李川. 浙江大学, 2020(01)
- [8]基于表观病害的空心板梁桥承载能力及耐久性评定方法研究[D]. 王子琛. 东南大学, 2020(01)
- [9]瓦厂坪大桥病害特征分析与采空区的影响研究[D]. 张永强. 成都理工大学, 2020(08)
- [10]云南省农村公路水毁灾害分析及对策研究[D]. 杨棚. 昆明理工大学, 2020(05)