一、数学中的对应思想在计划与实际应用题中的建立(论文文献综述)
陈玲玲[1](2021)在《基于数学模型思想的小学高年级数学应用题教学研究》文中研究指明模型思想是数学课标新增的十大核心词之一,也是一项基本的数学思想,在数学思想方法中拥有举足轻重的地位。在课堂中进行模型思想教学能够提高学生建模能力,对发展学生数学应用意识具有重要意义。首先,采用文献研究法,梳理有关数学模型思想的理论基础,分析当前小学数学模型思想以及应用题教学的发展历史、应用现状,指出小学高年级应用题运用模型思想的重要价值。其次,运用调查研究、案例分析等方法了解数学模型思想的应用现状。在相关理论知识的支撑下,并结合模型思想的含义,构建了高年级应用题教学应用模型思想的教学模式,根据构建的教学模式、提出了教学原则并编写了三个教学案例,同时进行了实践,分别是《用字母表示数》、《平行四边形的面积》、《植树问题》。通过教师访谈,了解一线教师应用模型思想教学的实际状况,总结数学建模教学中存在的问题,主要包括:一、教师管教过多,课堂教学中不够放手,学生在一定程度上还是跟着教师的思维走。二、教师应该认真备课,根据课堂实际情况进行调整。同时,具体实际操作过程中应灵活运用模型思想的教学模式。最后,根据模型思想的教学原则、教学模式、教学设计、教学分析与评价等提出以下三点策略:一、关注教师、提升素养。教师应该从教材入手,认真研读,在课外积极学习理论知识,丰富专业素养。二、深入研究,解读教材。教师在解读教材过程中,要特别注意挖掘教材中的模型思想,编制教学案例要遵循基于模型思想的教学设计过程模式,并不是随着教师的个人理解随意进行教学案例编制,明确教学设计步骤。三、选择方法、分段进行。在课堂上融入模型思想时,可分阶段进行,首先引导学生初步感受模型思想,其次利用变式帮助学生深入掌握模型思想。帮助教师明确模型思想的内涵,掌握模型思想的理论知识,构建起模型思想知识体系。
苏月蒙[2](2021)在《小学数学教学中有效提问问题研究 ——以“数与代数”为研究重点》文中认为古人云“学起于思,思源于疑,疑解于问。”这里的“疑”是指学生产生的疑惑,一方面是通过自己的“问”以解“疑”,另一方面是通过教师的“问”来解学生的“疑”。由此可见,从古至今教师的提问在课堂中都起着至关重要的作用,学生通过教师有效的提问,增进自己的学识,解答自己的疑惑。教师通过有效提问,引发学生的学习兴趣,启发学生的思维。本论文以小学数学数与代数有效提问为研究主题,采用文献研究,问卷调查,深度访谈,以及课堂观察等四种研究方法。首先,对有效教学的相关概念进行探究,分析有效教学的理论依据以及有效教学的特征,将已有文献对有效提问的标准和小学数学“数与代数”内容紧密结合,提出有效提问的标准。其次,通过到J市L小学进行实地调查,进行发放问卷、深度访谈以及随堂听课,充分了解现在小学数学“数与代数”课堂提问的情况,并且通过后期整理数据,运用图表结合的方式总结出小学数学“数与代数”课堂提问的现状。再次,结合具体的课例分析出加法运算教学盲目追求算法多样化、分数的初步认识未恰当结合数学史料等问题,并将现存的问题进行整理、归类,总结出当代小学数学教师专业数学知识匮乏、问题缺乏设计感以及在课堂提问中难以把握平衡这三点原因。最后根据总结出的原因分析,从知识点、设计点及平衡点三个维度提出相应的优化策略,以知识点为基点来促进教师对“十进位值制”的理解以及开展思维性课堂,从问题的设计感出发,设计出能够引发学生课后学习的问题,并把握好算理与算法以及具体与抽象之间的平衡等。本文对小学数学“数与代数”有效提问进行探析,为小学数学教师在数学课堂的有效提问提出优化策略,对小学数学教师在未来的教学过程中进行有效提问有着实践意义。
娜仁高娃[3](2020)在《小学“比和比例”教学研究》文中指出“比和比例”作为小学阶段最后的重要内容,旨在培养学生用比例思维方式思考和解决问题的能力,初步发展学生的函数观念,渗透数学的思想方法,有利于学生从形象思维顺利过渡到抽象思维,联通“算术”与“代数”,贯穿“数量”到“关系”。然而,有很多研究表明,能够真正掌握并灵活运用“比和比例”的知识对于小学六年级学生来说并不是一件容易的事。因此,小学“比和比例”的教学具有重要的研究价值。本文采用文献研究法、访谈法、问卷调查法进行研究。整理和分析了国内外关于小学“比和比例”理论和教学相关的文献,并简要概述了相关的教学理论,分析了课标和教材中与“比和比例”知识相关的课程目标及内容。在此基础上,对使用人教版教科书的六年级学生进行了测试调查,对相关教师与学生进行了访谈,从“比和比例”概念学习和应用比例解决问题角度了解了学生的学习现状和存在的主要问题,并从教师教授、学生学习、“比和比例”知识本身三个维度进行归因分析:教师备课缺乏深度和广度,在概念教学中没有重视让学生体会概念的生成过程,没有注重引导学生进行“比”与“分数”的互化联通,对于用“比和比例”解决问题的优越性讲解的不到位,而且对于可视化模型和信息技术辅助教学利用率不高等;学生无法正确分析数量关系,解题思维定势,缺乏对比、变式思维,没有很好地建立新旧知识的联系,体会到应用“比和比例”分析问题和解决问题的优越性,没有养成良好的审题和检查的习惯等;“比和比例”知识中有很多概念对于小学生来说较抽象,且此部分知识综合性较强。针对以上产生问题的原因,提出了优化小学六年级“比和比例”教学的具体策略:重视学生对概念的理解,让学生亲历概念的生成过程;培养学生的审题意识和分析数量关系的能力;加强变式训练,拓展和提升学生的思维;加强培养学生自主检查的习惯;引导学生学会灵活应用“比和比例”解决问题,体会“比和比例”解决问题的优越性;加强渗透数学思想方法;提高教师自身教学素养和学生的数学素养。最后,以《比的意义》和《用比例解决实际问题》为例编写教学设计,并以《按比例分配》为课例进行案例分析。
邓婷[4](2020)在《小学数学方程分层渗透教学的问题与对策研究 ——以长沙市某小学为例》文中进行了进一步梳理在小学数学教育阶段,“数与代数”板块中的方程是小学生从算术思维向代数思维的转折点。方程不仅仅包括其本身包含的知识内容,更重要的是其背后蕴含的思想方法。但是当前对“方程”的教学仅聚焦在高年级,学生的学习情况并不乐观。基于相关理论发现这种教学情况亟待改进。本文首先深入解读了《课标》中对方程、方程教学要求及方程思想的表述,粗略把握相关描述的大致情况;其次,浏览了国内外关于小学方程及方程思想的研究成果,对文献进行整理分析,较为客观地把握了当前的研究现状;再次,带着目的深入长沙市某小学,在老师的协助下以每一年段的两个班级学生和36名教师为研究对象,采用问卷调查、访谈相结合的方法分层次地对方程教学展开研究,大致了解实际教学信息。综合分析调查情况,找出小学数学方程分层渗透教学存在的问题并提出相应的教学对策。研究发现:1.在第一学段基础层中,学生符号意识渗透不足,不能理解符号的作用,从而导致学习方程概念及其意义的错乱。2.在第二学段发展层中,方程思想断层,学生对数量关系的理解不够透彻,结构意识和守恒意识缺乏,从而导致列方程解题时方程解法的生疏。3.在第三学段强化层中,忽略方程实质教学,学生没有领会方程方法和方程思想的价值,导致解方程时“小毛病”出现,进而代数思维的发展受限。改进意见:1.在基础层夯实基础加强对符号意识的培养,教师要挖掘且重视“前方程”内容,初步培养学生的符号意识。2.在发展层衔接发展,渐进方法和“关系”教学。有层次地、多角度地训练学生对关系的理解;加强公式、法则、数学语言的训练,逐渐渗透方程思想方法。3.在提升层强化提升重视方程“实质”教学,凸显方程思想和方程方法的价值。即既要重视方程的前后联系,又要注重方法的融会贯通和方程知识的学以致用,衔接与强化各个阶段之间的教学。综上,方程教学需要教师从整体上循序渐进,融会贯通地帮助学生掌握方程思想方法,促进学生思维能力发展。
陈维彪[5](2020)在《基于学习迁移理论的高中数学不等式教学研究》文中研究说明通过迁移可以更好地架构不等式知识网络,培养学生的发散性思维,提高课堂教学效果和学生的逻辑推理能力.但在不等式实际教学中,学习迁移理论并没有发挥其应有的作用.因而,有必要了解学习迁移理论在不等式教学中的使用现状,制定相应的教学策略.本研究通过对学生进行问卷调查和访谈,调查学生对迁移概念的了解、迁移作用的认识以及在学习过程中使用迁移的情况;对教师进行访谈,了解教师在不等式教学中的困惑、对学习迁移理论的了解、影响迁移效果因素的看法及在教学中使用迁移的情况,分析存在的问题;接着研究学习迁移理论在不等式教学中的应用,得出学习迁移理论能提升学生不等式学习效果的结论.最后,提出基于学习迁移理论的不等式教学建议:(1)做好初高中不等式衔接教学,为高中不等式教学创造迁移基础;(2)借鉴新教材,迁移拓展不等式知识;(3)培养正迁移,纠正负迁移;(4)精心组织教学活动,培养学生的迁移意识;(5)重视变式训练,提高迁移能力;(6)对数学文化和不等式进行双向迁移,提升学生学习不等式的兴趣;(7)精心设计校本选修课程,为学生未来发展提供迁移基础.把学习迁移理论用到不等式教学过程中,系统地研究不等式知识,能提高学生学习不等式的兴趣,优化教师课堂教学活动,提高教学效果,对教师和学生的发展都有重要意义.
黄龙华[6](2020)在《初中方程应用题可视化教学研究》文中研究表明方程应用题是初中数学应用的重要体现,义务教育数学课程对方程思想也作了明确的要求,并提出教学应增强学生应用意识、提升学生思维能力.学习方程应用题有助于培养学生的模型思想,增强学生分析、解决实际问题的能力,因此,研究如何开展方程应用题的教与学具有重要的意义.为探讨思维可视化在初中方程应用题教学中能否产生影响,本研究采用文献法、实验研究法、问卷调查法等研究方法,以笔者所在中学八年级两个班学生作为研究对象开展研究.以33个学生作为实验班研究对象,实验前后33个学生参与问卷调查与数学方程应用问题测试.结果表明初中方程应用题可视化教学能逐步提高学生学习数学应用题的兴趣,对课堂教学效率、学生成绩的提高起到了积极的效果.根据研究结果,笔者还对研究过程中得到的启示进行了梳理,提出了一些建议.由于研究时间有限、取样容量有限等因素影响,可视化解决方程应用题的教学效果仍需继续深入研究.
詹继涛[7](2020)在《基于数学思想方法的小学数学算理分析》文中进行了进一步梳理运用数学思想方法分析算理过程,可提高学生的运算能力、分析能力,帮助学生归纳运算关系和方法.基于对应思想分析了一年级的比多少、偶数集与自然数集元素同样多的算理;基于函数思想分析了乘法口诀表、正反比例关系的算理;基于化归思想分析了加减乘除口算、两位数乘两位数计算法则、多边形面积计算公式的算理;基于数形结合思想分析了异分母相加减、分数乘除法及极限问题的算理.
谢春艳[8](2020)在《小学数学课程中的代数推理及其教学研究》文中指出代数推理是构成数学推理的重要组成部分,其所体现的对数量关系的挖掘,有助于学生转变程序思维,为学生的数学学习提供质的丰富性。本研究将代数推理聚焦于小学阶段算术教学中的渗透,一方面是因为小学生进入初中阶段后学习代数知识存在困难,而小学算术教学中的数字事实本就是构成关系结构的重要基础,代数推理教学更能帮助他们紧密把握看似琐碎的算术操作间的联系。另一方面,本研究通过梳理“代数推理”相关研究发现,国内研究仍以关注中学的代数推理能力发展较多,而且以一线教师的实践研究为主,集中于学生代数推理的问题与一般教学策略研究,缺乏规范的理论研究与实证研究的支持。所以,本研究把握影响代数推理教学质量的两条线索,一是课程中的知识逻辑,二是学生与教师对代数推理的认知情况,以此为分析要素展开代数推理的研究。首先,结合国内外的代数推理研究成果,聚焦代数内容的三个部分,认识到代数推理可划分为分析性推理、创造性推理和实践性推理三种推理方式,旨在由数学的或现实的问题情境寻求突显代数特有的等价关系和变化关系的结论。其中,纯粹代数知识学习和问题解决学习有不同的代数推理过程,基于分析代数推理过程的考虑,本研究结合SOLO分类理论展开对小学生的代数推理能力发展水平的初步划分。其次,以《课程标准》和苏教版小学数学教材为文本分析对象,了解小学数学实际培养学生代数推理能力的基本要求、可选内容与方式,并整体把握早期代数内容的分布情况、推理方式和推理发展水平。经分析,《课程标准》和教材内容均体现了阶段性与层次性,但在聚焦代数推理内容的核心思想上尚待教师的整理。然后,本研究选取了三所不同层次类型学校的学生和33名小学数学教师作为研究对象,以编制问卷工具了解学生代数推理的思考表现和教师对代数推理及其教学的认识。小学生代数推理能力发展水平以多点结构水平、多点至关联结构的过渡水平为主,影响他们顺利展开代数推理的因素,既有代数推理实施规范的缺乏,也有对相关抽象的代数概念的陌生。相较之下,教师具有较好的代数推理能力,但有关代数推理的核心思想有待掌握,教学理解缺乏一定的过程性。最后,本研究认为在小学数学代数推理教学中,教师要把握算术和代数的区别与联系,从基础性、过程性和结构性来引导教学实施,教材分析和学情分析可帮助挖掘学理、设计教学活动。具体如下:广义算术中,要拓宽学生对数字模式的体验,联结书面记录、展示思考过程,聚焦等价关系、实现自然过渡,充实探索过程、创生符号意识;函数思维中,要积累计数活动、促进一般化表达,充分利用数量关系问题、渗透变化观念;建模语言中,要淡化形式、注重实质,激发学生的问题意识,转换问题形式、促进知识建构。
黄翠萍[9](2019)在《初中方程教学的理论与实践研究》文中提出方程是初中数学的重要内容,也是将数学知识和现实生活问题联系起来的枢纽,所以方程教学一直是教育研究的重点和热点。方程教学不仅仅是教授方程基础知识和解方程这一基本技能,方程中还蕴含很多数学思想,例如抽象思想、化归思想、模型思想等等。本论文从理论与实践两方面对方程的教学进行研究,理论方面,对数学基本思想进行了种类和层次划分,建立了本论文的理论与评价框架;实践方面,从课程、教师、学生三个方面对方程进行实践研究,并且从方程的概念、解方程、列方程解应用题三个角度提出具体可行的教学建议和教学设计,并请一线教师对其进行评价。具体研究如下:首先,本论文对国内外相关文献进行综述,将数学基本思想分类为抽象思想、推理思想、模型思想,同时分析北师大版初中数学教材,说明三种数学基本思想在方程中的体现,并且结合数学学科实质和课标要求对数学基本思想进行层次划分,建立本论文的理论框架与评价体系。其次,本论文结合《义务教育数学课程标准(2011年版)》对北师大版初中教材中的方程内容进行研读,从方程的概念、解方程、列方程解应用题三个角度来梳理初中各方程之间的内在联系,以数学基本思想为理论基础,为教师教学提供建议。通过梳理教材发现:(1)方程教学从不同角度体现了数学基本思想。(2)代数基础的学习很重要,方程的教学是建立在代数基础之上的。(3)数学思想是蕴含在数学知识之中的,需要老师在课堂实施中说明并且引导学生体会。(4)数学基本思想的学习有利于建构方程知识的理论框架。然后,本论文对初中教师进行访谈,得出结论:教龄较长或者学历较高的老师对于方程中的数学思想了解会比教龄相对较短或学历相对较低的老师更深刻,部分教龄较短的初中教师对于数学思想的了解并不多,大多和数学方法联系在一起;教师都认同方程中蕴含数学基本思想,并且能在课堂上渗透对数学基本思想的学习。最后,本论文结合评价框架设置了学生测试卷,对四川两所初中共246名学生进行测试、收集数据,同时用SPSS软件对数据进行整理,得到结论:(1)九年级学生对方程中的数学基本思想的掌握情况较为一般。(2)男生与女生对于方程中数学基本思想的掌握情况在整体上并没有明显的差异。(3)发展较好的学校掌握情况优于普通学校,基础较好的班级掌握情况优于普通班级。(4)三类数学基本思想都有一定的相关性,其中推理思想和模型思想的相关性最高。(5)大部分学生能够达到实际问题数学化、数学问题符号化这两个阶段,较少同学能够达到应用阶段。本论文结合《义务教育数学课程标准(2011年版)》与北师大版初中数学教材,对方程教学从理论与实践两个方面进行研究,对方程教学提出相应建议并设计教案,为教师教学提供参考。
林革[10](2018)在《应用题教学的三种思维方法》文中研究表明应用题教学是小学数学的重要内容,它对培养学生思维能力,提高学生数学素质,运用数学知识解决实际问题,帮助学生理解数学概念的含义和法则的来源有重要的促进作用。因此,教师在教学应用题的过程中,应该有计划地教给学生解答应用题的几种基本思维方法。一、帮助学生建立"对应思想"俗话说:"一个萝卜一个坑。"这句话形象比喻了数学中的对应
二、数学中的对应思想在计划与实际应用题中的建立(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、数学中的对应思想在计划与实际应用题中的建立(论文提纲范文)
(1)基于数学模型思想的小学高年级数学应用题教学研究(论文提纲范文)
摘要 |
Abstract |
绪论 |
一、选题背景、理论基础及概念界定 |
(一)选题背景 |
(二)理论基础 |
(三)核心概念 |
二、模型思想的研究现状及分析 |
(一)国外相关研究现状 |
(二)国内相关研究现状 |
(三)研究现状评述 |
三、研究设计 |
(一)研究目的 |
(二)研究意义 |
(三)研究内容 |
(四)研究思路 |
(五)研究方法 |
第一章 小学高年级数学应用题模型教学的调查分析 |
第一节 数学建模能力水平划分标准 |
第二节 调查研究 |
一、调查设计 |
二、调查结果 |
第三节 教师个案访谈 |
一、访谈设计 |
二、访谈实录 |
三、访谈结果分析 |
第二章 模型思想在小学高年级数学应用题中的教学原则与模式 |
第一节 基于模型思想的小学应用题教学设计原则 |
一、分层推进的教学设计原则 |
二、情境性的教学设计原则 |
三、连贯性的教学设计原则 |
四、可操作性的教学设计原则 |
第二节 基于数学模型思想小学高年级应用题教学过程模式 |
一、感知模型阶段 |
二、构建模型阶段 |
三、应用模型阶段 |
四、验证模型阶段 |
五、巩固模型阶段 |
第三章 教学案例设计及评价 |
第一节 基于数学模型思想小学高年级应用题教学案例设计 |
一、《用字母表示数》教学设计 |
二、《平行四边形的面积》教学设计 |
三、《植树问题》教学设计 |
第二节 基于模型思想小学高年级应用题教学案例评价 |
一、《用字母表示数》的评价 |
二、《平行四边形的面积》评价 |
三、《植树问题》评价 |
第四章 教学中应用模型思想的策略 |
第一节 关注教师、提升素养 |
一、认真研读教材 |
二、学习理论知识 |
第二节 深入研究、解读教材 |
一、挖掘教材中的模型思想 |
二、明确教学设计步骤 |
第三节 选择方法、分段进行 |
一、分阶段进行教学 |
二、选择渗透方法 |
结语 |
参考文献 |
附录 |
致谢 |
(2)小学数学教学中有效提问问题研究 ——以“数与代数”为研究重点(论文提纲范文)
摘要 |
abstract |
导言 |
(一)选题依据 |
(二)文献综述 |
(三)概念界定 |
(四)研究方法 |
(五)研究价值 |
一、有效提问的相关概述 |
(一)有效教学的理论基础 |
1.维果茨基“最近发展区”学说 |
2.赞科夫“发展性教学”理念 |
3.奥苏伯尔“有意义学习”理论 |
4.罗杰斯“以学生为中心”教学模式 |
(二)有效教学的特征 |
1.主动学习与启发教学并存 |
2.独立学习与针对教学同在 |
3.真实课堂与课后反思兼顾 |
(三)有效教学提问的标准 |
1.教学目标的达成 |
2.数学思想的落实 |
3.数学史料的渗透 |
4.数学学习的延伸 |
二、小学数学“数与代数”有效提问的现状调查 |
(一)调查设计 |
1.调查目的 |
2.调查对象 |
3.调查方法 |
4.调查过程 |
(二)调查结果 |
1.教师基本情况分析 |
2.教师问卷以及访谈结果分析 |
三、小学数学“数与代数”有效提问存在的问题 |
(一)数的认识教学中有效提问存在的问题 |
1.整数的认识中“十进位值制”思想机械形成 |
2.小数的初步认识时未将数学学习延伸至课后 |
3.分数的初步认识未恰当结合数学史料 |
(二)数的运算教学中有效提问存在的问题 |
1.乘法运算时偏向“定义式”教学 |
2.加法运算教学时盲目追求算法多样化 |
3.乘法交换律教学时抽象与具体不平衡 |
(三)数的应用教学中有效提问存在的问题 |
1.“烙饼问题”中推理思想渗透不合理 |
2.设计应用题时脱离生活实际 |
3.比的意义中数形结合思想应用不当 |
四、小学数学“数与代数”有效提问存在问题的原因分析 |
(一)专业数学知识匮乏 |
1.教师易将数学概念混淆 |
2.教师对小学数学思想理解不透彻 |
3.教师缺乏编写应用题的能力 |
(二)问题缺乏设计感 |
1.教师缺乏对提问形式的设计 |
2.教师缺乏对提问时机的设计 |
3.教师缺乏对提问内容的设计 |
(三)提问难以把握平衡 |
1.教师忽视了算理的重要性 |
2.教师忽视了学生的理解能力 |
3.教师忽视了学生的抽象能力 |
五、小学数学“数与代数”有效提问的优化策略 |
(一)以知识为基点促进有效提问 |
1.整数初步认识引导学生感悟“十进位值制” |
2.开展思维性课堂 |
3.教师提升编写应用题的能力 |
(二)以设计为亮点提升有效提问 |
1.设计能将数学学习延伸至课后的问题 |
2.数学史在小学数学课堂中时时渗透 |
3.教师应多提启发性问题 |
(三)以平衡为要点促进有效提问 |
1.将算理贯穿整节课 |
2.教师充分相信学生的理解能力 |
3.运用多种表征促使学生抽象思考 |
结束语 |
参考文献 |
致谢 |
附录 |
攻读硕士期间的学术成果 |
(3)小学“比和比例”教学研究(论文提纲范文)
中文摘要 |
abstract |
第1章 绪论 |
1.1 问题提出 |
1.2 研究目的与意义 |
1.2.1 研究目的 |
1.2.2 研究意义 |
1.3 国内外研究现状 |
1.3.1 国外研究现状 |
1.3.2 国内研究现状 |
1.4 研究思路与方法 |
1.4.1 研究思路 |
1.4.2 研究方法 |
1.5 创新之处 |
第2章 小学比和比例相关教学理论概述及教学内容分析 |
2.1 比和比例相关教学理论概述 |
2.2.1 弗赖登塔尔的数学教学理论 |
2.2.2 波利亚的数学教育理论 |
2.2.3 皮亚杰建构主义学习理论 |
2.2.4 布鲁纳的数学学习理论 |
2.2 小学比和比例内容分析 |
2.2.1 《课标》对比和比例内容的教学要求 |
2.2.2 小学教科书中比和比例的内容分析 |
2.2.3 比和比例内容之教学分析 |
第3章 小学比和比例教学现状调查与分析 |
3.1 教师访谈 |
3.1.1 访谈设计 |
3.1.2 设计目的 |
3.1.3 访谈形式 |
3.1.4 访谈结果 |
3.2 学生测试调查 |
3.2.1 测试目的 |
3.2.2 测试对象及形式 |
3.2.3 测试卷编制 |
3.2.4 测试卷结果及分析 |
3.3 问题成因分析 |
3.3.1 教师方面 |
3.3.2 学生方面 |
3.3.3 知识本身及教材编排 |
第4章 比和比例教学策略 |
4.1 加深学生对概念的深度理解 |
4.1.1 追本溯源,挖掘概念本源 |
4.1.2 创设有效的情境,让学生感悟概念的生成过程 |
4.1.3 加强对概念的多元表征,引导学生抽象概括概念 |
4.1.4 在结构中理解和记忆概念 |
4.1.5 在概念的价值与应用中掌握概念 |
4.1.6 对比辨析有效区分易混淆概念 |
4.2 注重让学生经历比和比例问题解决的完整过程 |
4.2.1 培养学生的审题意识和分析数值关系的能力 |
4.2.2 加强变式训练,拓展和提升学生的思维 |
4.2.3 培养学生自主检查的习惯 |
4.3 引导学生学会使用比例思维解决问题 |
4.4 渗透数学思想方法,提高学生的数学素养 |
4.5 提高教师自身教学素养 |
4.5.1 完善知识储备,引导学生深度学习 |
4.5.2 不断研究,超越教材 |
4.5.3 合理运用和开发教学技术和工具 |
第5章 比和比例教学设计及案例分析 |
5.1 教学设计 |
5.1.1 《比的意义》教学设计 |
5.1.2 《用比例解决实际问题》教学设计 |
5.2 教学案例 |
5.2.1 按比例分配 |
5.2.2 教学案例分析 |
第6章 研究结论与展望 |
6.1 研究结论 |
6.2 教学建议 |
6.3 不足之处及研究展望 |
参考文献 |
附录1 |
附录2 |
附录3 |
致谢 |
(4)小学数学方程分层渗透教学的问题与对策研究 ——以长沙市某小学为例(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
第一节 研究背景与研究意义 |
一、研究背景 |
二、研究意义 |
第二节 研究综述与理论基础 |
一、研究综述 |
二、理论基础 |
第三节 研究内容与概念界定 |
一、研究内容 |
二、概念界定 |
第四节 研究思路与研究方法 |
一、研究思路 |
二、研究方法 |
第二章 小学数学方程分层渗透的内容及其价值 |
第一节 方程分层渗透的内容 |
一、小学一二年级基础层的前方程萌芽 |
二、小学三四年级发展层的方程方法衔接 |
三、小学五六年级提升层的方程强化 |
第二节 小学数学方程分层渗透教学的教育价值 |
一、循序渐进促发展 |
二、承上启下利教学 |
三、全面有效助教师 |
第三章 调查设计与实施 |
第一节 调查设计 |
一、调查工具与目的 |
二、调查对象的选取 |
三、调查问卷的内容维度设计 |
四、问卷与访谈提纲设计 |
第二节 调查实施 |
一、调查过程 |
二、数据处理 |
第四章 小学数学方程分层渗透教学的问题及其成因分析 |
第一节 小学数学方程分层渗透教学的问题 |
一、“基础层”——符号意识渗透不足 |
二、“发展层”——方程思想渗透不强和“关系”解释不清 |
三、“提升层”——忽略方程的“实质”教学 |
第二节 小学数学方程分层渗透教学问题原因剖析 |
一、教师层面——专业素养不足 |
二、教学层面——分层渗透教学力度不强 |
三、学生层面——知识储备欠缺 |
第五章 小学数学方程分层渗透教学的策略 |
第一节 夯实基础,加强符号意识培养 |
一、注重前方程,引导学生初步体会符号代表数 |
二、渗透符号意识,引导学生初步认识符号参与运算 |
第二节 衔接发展,渐进方法和“关系”教学 |
一、反复训练“思维”,发展结构意识 |
二、增加数学语言训练,增强对数量关系的理解 |
三、加强公式、法则的训练,渗透方程方法的教学, |
第三节 强化提升,重视方程实质教学 |
一、加强“用字母表示数”前后联系 |
二、淡化方程概念,注重方程本质 |
三、强化“解方程”的融会贯通 |
四、增强“实际问题与方程”的学以致用 |
第四节 结论 |
参考文献 |
附录1 |
附录2 |
致谢 |
(5)基于学习迁移理论的高中数学不等式教学研究(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究的背景 |
1.1.1 不等式学习的重要性 |
1.1.2 不等式教学中的困境 |
1.1.3 学习迁移理论在不等式中的作用 |
1.2 核心名词界定 |
1.2.1 教学 |
1.2.2 教学设计 |
1.2.3 解题 |
1.2.4 迁移 |
1.3 研究的内容和意义 |
1.3.1 研究的内容 |
1.3.2 研究的意义 |
1.4 研究的思路 |
1.4.1 研究计划 |
1.4.2 研究的技术路线 |
1.5 论文的结构 |
第2章 理论基础与文献综述 |
2.1 研究的理论基础 |
2.1.1 学习迁移的概念 |
2.1.2 迁移的分类 |
2.1.3 早期的迁移理论 |
2.1.4 现代的迁移理论 |
2.2 文献综述 |
2.2.1 文献搜集 |
2.2.2 不等式的研究现状 |
2.2.2.1 不等式教材的研究现状 |
2.2.2.2 不等式解题教学的研究现状 |
2.2.2.3 不等式教学策略的研究现状 |
2.2.3 学习迁移理论的在数学中的研究现状 |
2.2.4 不等式中的迁移的研究现状 |
2.2.5 文献评述 |
2.3 小结 |
第3章 研究设计 |
3.1 研究目的 |
3.2 研究方法 |
3.2.1 文献法 |
3.2.2 问卷调查法 |
3.2.3 访谈法 |
3.2.4 痕迹分析法 |
3.2.5 案例研究法 |
3.2.6 微型实验研究法 |
3.3 研究工具及研究对象选取 |
3.4 研究伦理 |
3.5 研究的创新之处 |
3.6 小结 |
第4章 基于学习迁移理论的不等式教学现状调查 |
4.1 基于学习迁移理论的问卷分析 |
4.1.1 问卷设计 |
4.1.2 实施调查 |
4.1.3 问卷可靠性分析 |
4.1.4 学习迁移理论的问卷结果分析 |
4.1.4.1 学生学习一元一次不等式的迁移体会 |
4.1.4.2 学生对教师的迁移教学的感受 |
4.1.4.3 学生对迁移作用的观点 |
4.1.4.4 学生对解题中所涉及到迁移的体会 |
4.1.4.5 学生对数学内部及其他学科间的迁移的认识 |
4.2 基于学习迁移理论的访谈研究 |
4.2.1 访谈设计 |
4.2.2 实施访谈 |
4.2.3 访谈结果及分析 |
4.2.3.1 教师访谈记录 |
4.2.3.2 教师访谈分析 |
4.2.3.3 学生访谈记录 |
4.2.3.4 学生访谈分析 |
4.3 基于学习迁移理论的调查结论 |
4.4 小结 |
第5章 学习迁移理论在不等式教学中的应用 |
5.1 新、旧课标的不等式对比分析 |
5.1.1 内容方面 |
5.1.2 要求方面 |
5.2 不等式中的迁移 |
5.2.1 不等式知识中的迁移 |
5.2.1.1 不等关系与不等式中的迁移 |
5.2.1.2 一元二次不等式及其解法中的迁移 |
5.2.1.3 基本不等式中的迁移 |
5.2.1.4 教材其他内容的迁移 |
5.2.2 数学文化中的迁移 |
5.2.3 思想方法的迁移 |
5.3 基于学习迁移理论的不等式教学目的 |
5.4 基于学习迁移理论的不等式教学原则 |
5.5 基于学习迁移理论的不等式教学流程 |
5.6 基于学习迁移理论的不等式教学案例 |
5.6.1 实验班、对照班的选择 |
5.6.2 基于学习迁移理论的“一元二次不等式及其解法”的案例 |
5.6.2.1 基于学习迁移理论的一元二次不等式及其解法教学设计构想 |
5.6.2.2 基于学习迁移理论的一元二次不等式及其解法教学设计 |
5.6.2.3 基于学习迁移理论的一元二次不等式及其解法的教学访谈 |
5.6.3 基于学习迁移理论的“基本不等式”的案例 |
5.6.3.1 基于学习迁移理论的基本不等式教学设计构想 |
5.6.3.2 基于学习迁移理论的基本不等式教学设计 |
5.6.3.3 基于学习迁移理论的基本不等式的教学访谈 |
5.6.4 迁移教学效果分析 |
5.6.4.1 实验班解题痕迹分析 |
5.6.4.2 第10周周测分析 |
5.7 小结 |
第6章 基于学习迁移理论的不等式教学建议 |
6.1 基于学习迁移理论的不等式教学建议 |
6.1.1 做好初高中不等式衔接教学,为高中不等式教学创造迁移基础 |
6.1.2 借鉴新教材,迁移拓展不等式知识 |
6.1.3 培养正迁移,纠正负迁移 |
6.1.4 精心组织教学活动,培养学生的迁移意识 |
6.1.5 重视变式训练,提高迁移能力 |
6.1.6 对数学文化和不等式进行双向迁移,提升学生学习不等式的兴趣 |
6.1.7 精心设计校本选修课程,为学生未来发展提供迁移基础 |
6.2 小结 |
第7章 结论与反思 |
7.1 研究的结论 |
7.1.1 问卷和访谈调查分析的结果 |
7.1.2 迁移理论在不等式教学中的应用分析 |
7.1.3 不等式教学建议 |
7.2 研究的不足之处与展望 |
参考文献 |
附录A 基于学习迁移理论的调查问卷 |
附录B 学生访谈提纲 |
附录C 教师访谈提纲 |
附录D 后测题 |
攻读学位期间发表的学术论文和研究成果 |
致谢 |
(6)初中方程应用题可视化教学研究(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 研究背景 |
1.2 研究目的及研究问题 |
1.3 研究意义 |
1.4 研究思路与方法 |
1.5 创新之处 |
第二章 相关研究综述 |
2.1 数学可视化的相关研究 |
2.2 数学应用问题解决的表征 |
2.3 数学应用问题解决的过程与建模研究 |
2.4 方程应用题的教学综述 |
2.5 评述 |
第三章 方程应用题可视化教学理论模型 |
3.1 思维可视化理论分析 |
3.2 解决数学应用题的理论分析 |
3.3 解决初中方程应用题的理论模型分析 |
3.4 案例分析 |
第四章 方程与方程组教材分析 |
4.1 课标分析 |
4.2 教材分析 |
4.3 方程应用题的教育功能 |
4.4 方程应用教学应注意的问题 |
第五章 教学设计 |
5.1 应用一元一次方程 |
5.2 应用二元一次方程 |
5.3 应用分式方程 |
第六章 教学实验研究与分析 |
6.1 研究目的 |
6.2 实验设计 |
6.3 实验结果分析 |
6.4 问卷调查结果与分析 |
第七章 结论与展望 |
7.1 研究结论 |
7.2 研究启示 |
7.3 研究不足与展望 |
参考文献 |
附录 |
致谢 |
(7)基于数学思想方法的小学数学算理分析(论文提纲范文)
1 小学数学常用的数学思想方法 |
2 小学数学计算教学中对算理的认识 |
3 基于数学思想方法的算理分析 |
3.1 基于对应思想的算理分析 |
3.2 基于集合思想的算理分析 |
3.3 基于函数思想的算理分析 |
3.4 基于化归思想的算理分析 |
3.5 基于数形结合思想的算理分析 |
(8)小学数学课程中的代数推理及其教学研究(论文提纲范文)
摘要 |
Abstract |
绪论 |
第一节 研究缘起与意义 |
一、研究缘起 |
二、研究意义 |
第二节 研究综述 |
一、国内中小学代数推理研究的现状 |
二、国外中小学代数推理研究的现状 |
三、代数推理研究的结论与反思 |
第三节 核心概念界定 |
一、数学推理 |
二、代数思维 |
三、代数推理 |
第四节 研究思路与方法 |
一、研究思路 |
二、研究方法 |
第一章 代数推理解析 |
第一节 代数推理的内涵及分类 |
一、代数推理的内涵 |
二、代数推理的分类 |
第二节 代数推理的主要形式 |
一、分析性推理 |
二、创造性推理 |
三、实践性推理 |
第三节 代数推理的基本过程 |
一、纯粹代数知识学习中的代数推理过程 |
二、问题解决学习中的代数推理过程 |
第四节 代数推理能力的发展水平 |
第二章 小学数学“代数推理”课标要求之分析 |
第一节 “代数推理”课程目标的定位分析 |
第二节 “代数推理”内容标准的水平分析 |
第三节 “代数推理”实施建议的三维分析 |
一、对教学建议的分析 |
二、对评价建议的分析 |
三、对教材编写建议的分析 |
第四节 小结与思考 |
第三章 小学数学“代数推理”教材内容之分析 |
第一节 “代数推理”教材内容分布的整体分析 |
第二节 “代数推理”教材内容的推理方式分析 |
一、“广义算术”中的代数推理方式分析 |
二、“函数思维”中的代数推理方式分析 |
三、“建模语言”中的代数推理方式分析 |
第三节 “代数推理”教材内容的推理发展水平分析 |
一、“广义算术”中的代数推理发展水平分析 |
二、“函数思维”中的代数推理发展水平分析 |
三、“建模语言”中的代数推理发展水平分析 |
第四节 小结与思考 |
第四章 小学数学代数推理教学现状的调查与分析 |
第一节 调查研究设计 |
一、研究目的 |
二、研究对象 |
三、研究材料 |
第二节 学生测试问卷结果的统计与分析 |
一、三所学校学生的代数推理能力发展之总体差异分析 |
二、学生在“广义算术”中展开代数推理的具体表现 |
三、学生在“函数思维”中展开代数推理的具体表现 |
四、学生在“建模语言”中展开代数推理的具体表现 |
第三节 教师调查问卷结果的统计与分析 |
一、教师对代数推理的认识与使用情况分析 |
二、教师对学生使用代数推理过程的判断与评价情况分析 |
三、教师对代数推理教学的设计情况分析 |
第四节 小结与思考 |
一、小学生代数推理表现的特点 |
二、小学数学教师代数推理表现的特点 |
第五章 小学数学代数推理教学的基本理念与实施建议 |
第一节 小学数学代数推理教学的基本理念 |
一、事实与意义:紧抓代数推理教学的基础性 |
二、个别与一般:体会代数推理教学的过程性 |
三、程序与关系:注重代数推理教学的结构性 |
第二节 小学数学代数推理教学的实施建议 |
一、基于教材分析,发展教师专业化教学 |
二、透过学情分析,着眼学生素养生长 |
三、具体把握学理,创设有意义的教学活动 |
结论与展望 |
附录A 苏教版小学数学教材“代数推理”内容具体分布 |
附录B 小学生代数推理能力发展水平的双向细目表 |
附录C 小学生代数推理能力发展的测试问卷 |
附录D 小学数学教师对代数推理及其教学的认识调查问卷 |
参考文献 |
后记 |
(9)初中方程教学的理论与实践研究(论文提纲范文)
摘要 |
Abstract |
1 引言 |
1.1 研究的背景 |
1.2 研究的问题 |
1.3 研究的思路 |
1.4 研究的方法 |
1.5 研究的创新之处 |
1.6 研究的意义 |
2 文献综述 |
2.1 基本概念 |
2.1.1 国外对数学思想的研究 |
2.1.2 国内对数学思想的研究 |
2.1.3 数学思想、数学方法、数学能力的联系与区别 |
2.2 数学基本思想 |
2.2.1 抽象思想 |
2.2.2 推理思想 |
2.2.3 模型思想 |
2.3 “四基”之间的关系 |
2.4 方程教学研究 |
2.5 初中方程教学内容分析 |
3 初中方程的数学基本思想 |
3.1 解方程、应用方程是方程教学的重点和难点 |
3.2 初中方程所蕴含的数学思想 |
3.2.1 抽象思想 |
3.2.2 归纳思想 |
3.2.3 化归思想 |
3.2.4 模型思想 |
3.3 教材梳理总结 |
4 教师对方程中的数学基本思想的态度 |
4.1 研究目的 |
4.2 研究对象和研究方法 |
4.3 访谈提纲设置 |
4.4 访谈结果分析 |
4.5 访谈结论 |
5 学生在方程中的数学基本思想现状调研 |
5.1 测试卷编制 |
5.2 预测试及信度分析 |
5.3 正式测试及数据处理 |
5.3.1 测试实施过程 |
5.3.2 数据整理 |
5.4 测试结果分析 |
5.5 测试结论 |
6 教学建议与教学设计 |
6.1 教学建议 |
6.1.1 方程概念的教学 |
6.1.2 解方程的教学 |
6.1.3 列方程解应用题的教学 |
6.2 方程教学设计 |
设计1:方程概念教学——《认识一元一次方程》 |
设计2:解方程的教学——《用配方法求解一元二次方程》 |
设计3:列方程解应用题的教学——《应用一元一次方程——水箱变高了》 |
7 研究的结论和期望 |
7.1 研究结论 |
7.1.1 教材研究结论 |
7.1.2 教师访谈研究结论 |
7.1.3 学生测试研究结论 |
7.2 研究的期望 |
参考文献 |
附录一 教师访谈提纲 |
附录二 学生测试卷 |
致谢 |
在校期间研究成果 |
(10)应用题教学的三种思维方法(论文提纲范文)
一、帮助学生建立“对应思想” |
二、帮助学生建立“转化思想” |
三、帮助学生建立“假设思想” |
四、数学中的对应思想在计划与实际应用题中的建立(论文参考文献)
- [1]基于数学模型思想的小学高年级数学应用题教学研究[D]. 陈玲玲. 闽南师范大学, 2021(02)
- [2]小学数学教学中有效提问问题研究 ——以“数与代数”为研究重点[D]. 苏月蒙. 渤海大学, 2021(02)
- [3]小学“比和比例”教学研究[D]. 娜仁高娃. 内蒙古师范大学, 2020(08)
- [4]小学数学方程分层渗透教学的问题与对策研究 ——以长沙市某小学为例[D]. 邓婷. 湖南师范大学, 2020(01)
- [5]基于学习迁移理论的高中数学不等式教学研究[D]. 陈维彪. 云南师范大学, 2020(01)
- [6]初中方程应用题可视化教学研究[D]. 黄龙华. 广州大学, 2020(02)
- [7]基于数学思想方法的小学数学算理分析[J]. 詹继涛. 甘肃高师学报, 2020(02)
- [8]小学数学课程中的代数推理及其教学研究[D]. 谢春艳. 南京师范大学, 2020(04)
- [9]初中方程教学的理论与实践研究[D]. 黄翠萍. 四川师范大学, 2019(02)
- [10]应用题教学的三种思维方法[J]. 林革. 数学大世界(下旬), 2018(02)