一、源岩活化能分布最小值与有机质成熟度的关系(论文文献综述)
张紫芸,侯连华,罗霞,何坤,张岩[1](2021)在《鄂尔多斯盆地长7段页岩生烃动力学特征与原位转化温度条件》文中研究指明中国中—低熟页岩油/油页岩的资源潜力巨大,原位转化技术作为实现其工业化开采的有效途径日益受到各界重视。鄂尔多斯盆地三叠系延长组7段(长7段)是国内可采资源量最大的原位转化主力地层,除低熟页岩外,中等成熟度页岩的生烃特征和动力学过程可能不同,它们也可以作为页岩油/油页岩原位转化的潜在对象,现阶段缺乏相关机制研究。针对鄂尔多斯盆地长7段不同成熟度的天然页岩和半开放—半封闭体系模拟后页岩样品开展了开放体系热解实验,通过平行一级反应计算得到低熟页岩的频率因子为5.47×1010s-1,活化能分布范围为38~61 kcal/mol,主峰为49 kcal/mol,占比66.91%。成熟度越高,生烃平均活化能越高,原位转化耗能越大,热解S2峰所表征的生烃潜力越低。依据分布特征将活化能划分为<47 kcal/mol、47~52 kcal/mol和>52 kcal/mol的低活化能、主峰活化能、高活化能3组,随成熟度增加,低活化能、高活化能组占比增加,主峰活化能组占比降低。将动力学参数外推至原位转化条件下,建议选择成熟度较低的页岩(RO<1.0%),快速升温到主生烃期后慢速升温充分转化,并依据页岩成熟度的不同设置不同的原位转化温度区间。
关瑞[2](2021)在《延安探区山西组细粒沉积物生烃及页岩气富集特征》文中进行了进一步梳理页岩气是一种非常规油气,是我国未来天然气主要的接替选区,具有“持续式”聚集的特点。我国鄂尔多斯盆地延安地区山西组页岩气资源丰富,但目前尚未对该地区山西组建立页岩气的富集模式。本文选取延安地区山西组泥岩样品,以一大整块样品,钻取直径为2.5cm的岩心柱子,利用WYMN-3型温—压生烃模拟仪对岩心柱进行生烃模拟实验,研究其生排烃潜力,并利用扫描电镜和氮气吸附的方法对延安地区山西组储层孔隙进行分析,并与实际地质条件相结合,以探讨在研究区中影响页岩气富集的主要因素,建立页岩气藏的富集模式。本文根据测井曲线和地层划分标准对山西组进行了小层划分和沉积微相划分,认为研究区山西组整体处于三角洲沉积相,山1段和山2段泥岩厚度普遍在20~40m之间。在此基础上利用微量元素分析测试数据分析还原了山西组各小层的古沉积环境和古生产力,结果显示在山西组沉积时期整体处于水下,基本处于温暖潮湿的还原环境中,沉积的古生产力较高,有机碳含量较高,有机质的成熟度达到了高成熟—过成熟的阶段,大量发育以生气为主的Ⅲ型干酪根。而生烃模拟实验的结果显示山西组不同岩性组合,对不同成熟阶段的生排烃均有影响。目前山西组发育泥—砂—泥、煤—泥—砂及煤—泥三种岩性组合,在有机质成熟度过高时,泥岩中生成的烃类滞留泥岩地层中,可以形成较高的超压,可以大量排出。电镜扫描和氮气吸附实验的结果显示该地区主要发育大小以介孔为主矿物粒间孔和粒内孔,是油气运移与吸附的主要通道。在对泥页岩埋藏地质条件研究的基础上,与研究区生烃强度及孔隙特征相联系,建立了延安地区山西组的两种页岩气富集模式,分别是厚层泥岩夹薄砂层富气模式和厚层泥页岩与粉细砂岩富气模式。
孙佳楠[3](2021)在《东营凹陷页岩可动油评价及留烃机理》文中指出为了研究东营凹陷页岩中可动油情况以及页岩油生烃过程中形成的页岩油与烃源岩两者之间存在的关系,对东营凹陷沙三下段和沙四上段烃源岩进行了热解实验和留烃实验。分析了干酪根热解产物的组成,对产物进行了动力学软件模拟,结合东营凹陷实际的埋藏史和受热史,得到了东营凹陷沙三下段和沙四上段生烃史和留烃史。对东营凹陷烃源岩进行了无机矿物研究,研究了无机矿物对页岩油的滞留能力。结合东营凹陷生留烃史、烃源岩的基础地球化学和储层的基本参数信息,对东营凹陷页岩油的可动量进行了评价,并得到了页岩油可动量的评价模型。对生烃过后的残余干酪根进行了红外光谱实验,初步探讨了干酪根在生烃过程中,干酪根分子的结构变化。干酪根热解实验产物分析结果表明,对于比较王57和王161干酪根,总烃的产率都是随着热解温度的升高呈现先升高后下降的趋势,C1-C5气体的产率随着热解温度的升高而升高,C6-C14轻烃和C14+重烃的产率随着热解温度的升高,呈先升高后降低的趋势,这是因为,随着热解温度的升高,干酪根生成的重质组分分解形成轻质组分,导致气态烃和产率不断升高,C6-C14轻烃先升高后下降,并且产率拐点出现的重质烃晚。通过生烃动力学对王57和王161两个干酪根进行研究,研究表明,王57烃源岩现在正进入主要的生烃阶段,而王161烃源岩已经进入生烃后期。对王57和王161干酪根进行留烃实验,根据干酪根的溶解度参数范围,我们用五种不同溶剂溶解度参数在7-13(cal/cm3)0.5范围内来进行溶胀实验,得到溶胀曲线,用来模拟不同成熟度下页岩油在残余干酪根中的滞留量。实验结果表明:干酪根对有机溶剂的吸附能力会随着成熟度的增加而降低,并且吸附量会逐渐平衡,不会降低为0。这是由于随着干酪根热演化程度的增加,干酪根的结构也会趋渐于稳定,一部分页岩油很难从干酪根中排出。用樊页1井原油配制五种不同浓度的原油样品进行无机矿物的表面吸附实验,分别得到了粘土矿物、石英/长石、方解石矿物的最大吸附原油能力。结果表明:粘土矿物、石英/长石、方解石矿物的最大吸附原油量分别为18 mg/g、3 mg/g和1.8 mg/g。统计得到了东营凹陷沙三下段和沙四上段的总有机碳和矿物含量。通过公式计算得到了烃源岩中无机矿物表面吸附原油的质量。尽管在页岩油评价中不经常使用抽提氯仿沥青“A”作为评价指标,但是,抽提氯仿沥青“A”无论是在成分组成还是在化学性质上,与页岩油都更为接近。基于孔隙度、气油比、岩石吸附量和油层参数随着成熟度的变化情况,结合生留烃动力学,建立了页岩油可动量模型。这有助于确定潜在的页岩油层、评价可动量的页岩油资源。该模型显示,东营凹陷高质量的页岩油资源的成熟度范围0.7-1.0%Ro之间:成熟度小于0.7%Ro时,有少量运移来的油;成熟度大于1.0%Ro,从烃源岩中排出的原油量增加,但可能进入常规储层中。通过对残余干酪根的红外光谱实验结果分析表明,干酪根分子在生烃过程中,分子中脂肪族化合物的含量逐渐减少,芳化程度逐渐增高,干酪根分子的缩聚程度逐渐增大,含氧官能团含量减少。在没有过油窗前,干酪根的生烃潜力会随着干酪根的成熟度增加而升高,过油窗之后,干酪根虽然有生烃潜力,但生烃潜力会大大降低;生烃过程中,干酪根的热演化程度也逐渐增加。
杨雯婷[4](2020)在《鄂尔多斯盆地延长组优质烃源岩对油气成藏的贡献 ——以下寺湾探区为例》文中研究指明鄂尔多斯盆地中的延长组作为盆地演化形成内陆湖盆后,第一套开始沉积的岩系,其中长7层和长9层段烃源岩大面积发育并且质量较好,即作为延长组的优质烃源岩。本论文应用有机地球化学测试分析技术、测井解释及录井资料及结合地区演化史,对鄂尔多斯盆地下寺湾地区延长组烃源岩的空间展布与成藏贡献差异进行了研究。根据烃源岩的有机质丰度、类型及成熟度分别评价各层烃源岩生烃潜力差异,长7TOC主要在1.875.21%,产油潜量7.5719.12mg/g,有机质类型好以Ⅱ2型为主,热演化程度高;长9TOC主要在4.556.73%,产油潜量7.1215.62mg/g,有机质类型以Ⅱ2-Ⅱ1型为主,热演化程度高,故将长7和长9层划分为优质烃源岩,在利用ΔlgR及测井数据,分别刻画出研究区不同优质烃源岩层的泥岩厚度及有机碳含量在平面及空间上的分布特征。根据长7、长9段烃源岩样品与长4+5、长6和长8段原油样品的地球化学分析数据,将不同油族和烃源岩进行油源对比,确定了原油的成因类型与不同烃源岩的贡献差异。其中长4+5、长6段原油样品在多个生标参数值变化上,都与长7暗色泥岩显示出很好的亲缘关系,说明两套油层组的主力生油岩来源于长7层。长8含油层中除了自生自储的油气资源外主要也来源于长7段,长9段优质烃源岩对各油层组也有少量贡献。在利用不同岩性烃源岩的生烃热模拟实验数据,确定黑色页岩与暗色泥岩的生烃差异,并建立烃源岩定量生烃模型,计算了不同烃源岩生烃强度与资源量,探讨了优质烃源岩对油气的成藏贡献。对研究区内不同层烃源岩的生烃贡献对比,下寺湾探区延长组的油气资源主要来源于优质烃源层长7和长9层,其中长7层的贡献能力更大,长6层作为研究区内较好烃源层也有少量贡献。
何春民[5](2020)在《琼东南盆地深水区烃源岩地球化学特征、生烃演化及气源追踪》文中进行了进一步梳理琼东南盆地是我国南海北部四大含油气盆地之一,深水区是其目前重要勘探地区,先后在中央峡谷水道砂岩储集体中发现了LS17、LS18和LS25气田,在松南低凸起古潜山储集体中发现了YL8气田。但是,深水区烃源岩特征与生烃演化历史仍不清楚,导致对该区天然气的成因与勘探潜力仍存在较大争议。针对这些问题,本论文系统采集了深水区烃源岩样品,对其开展了详细的地球化学、有机岩石学的和生烃动力学研究,评价了深水区海相与海陆过渡相烃源岩的地球化学特征与生烃潜力,获得了典型烃源岩的生烃动力学参数,解剖了典型油气藏中油气的成因、来源与成藏模式,为琼东南盆地深水区油气勘探提供了重要参考依据。取得的主要认识如下:(1)海陆过渡相与海相烃源岩TOC含量普遍小于1%,仅少数海陆过渡相烃源岩达到2%以上。海陆过渡相烃源岩氢指数介于50200 mg/g TOC之间,显微组分以镜质组和惰质组为主,属于典型的III型干酪根;海相烃源岩氢指数较高,主要介于250400 mg/g TOC之间,显微组分以陆源输入的镜质组和腐殖无定形组分为主,但壳质组含量增加,属于II2-III型干酪根。从崖城组到陵水组,从海陆过渡相到海相,显微组分中腐泥组含量上升,且有机质碳同位素值变重,两者大致以-27‰为界。海相烃源岩有机质碳同位素偏重与水生生物利用碳同位素较重的碳酸氢根作为碳源以及陵水组沉积时期大气中CO2浓度显着下降造成陆源C3植物碳同位素变重有关。(2)在50150 MPa压力范围内,压力的增加总体抑制了气体的生成,并且对湿气组分的抑制作用明显强于甲烷。压力增加在增大反应活化能的同时,也会提高反应的频率因子,这与压力增大造成气体膨胀做功增加并且反应体积被压缩导致分子碰撞频率增大有关。在5oC/Ma地质升温速率下,压力每增加50 MPa,进入生气窗的温度大约升高10oC。此外,相同成熟度下压力增大也会导致甲烷碳同位素变轻,与甲烷生成的抑制作用和分子反应机制的改变有关。(3)综合生烃动力学与油气地球化学特征,认为陵水凹陷中央峡谷带天然气为热成因气,主要来自海相烃源岩,而非早期认为的海陆过渡相烃源岩。其中,LS25气田天然气以垂向运移为主,LS18气田天然气以横向运移为主,而LS17气田天然气既有垂向也有横向运移。松南低凸起YL8气田天然气为热成因气与生物气的混合气,热成因气主要来自松南凹陷和宝岛凹陷南部斜坡区的崖城组海相烃源岩,油气以横向运移为主。(4)长昌凹陷WN1井在陵水组钻遇的少量天然气为热成因气,主要来自崖城组海相烃源岩,其缺少工业气流可能与储集质量差或圈闭遭受火山侵入体的破坏有关。除沉积中心之外,长昌凹陷斜坡区大部分崖城组仍处于生气阶段,在高质量储集层发育且火山侵入体影响较小的地区仍有可能发现工业气藏。
何川[6](2020)在《柴达木盆地东部石炭系烃源岩及原油分子地球化学表征》文中提出柴达木盆地石炭系生油气潜力巨大,但目前勘探程度较低,对石炭系烃源岩的认识较为浅薄。本文选取柴达木盆地东部多口钻井岩心及新发现的柴页井原油和天然气样品开展分子地球化学相关研究,为柴达木盆地后期勘探开发提供依据。本研究取得了以下认识:1.柴达木盆地东部石炭系烃源岩主要发育粉砂质泥岩、泥岩和炭质泥岩,有机质丰度较高,以III型干酪根为主,生源母质兼有海相与陆相有机质贡献。烃源岩样品的镜质体反射率分布在0.74%-1.88%,处于较高的热演化阶段。研究区烃源岩以低碳数正构烷烃为主,有一定的偶数碳优势,总体沉积于弱氧化-弱还原环境。烃源岩处于较高热成熟阶段,甾烷和萜烷化合物不发育。金刚烷等化合物在样品中广泛发育,表明金刚烷的形成不局限于原油裂解,高演化阶段烃源岩同样可以大量形成金刚烷。2.多环芳烃系列化合物的含量主要受控于热演化程度,样品中多种芳烃指数均与成熟度线性相关,但最为常用的MPI-1指数与实测成熟度相关性差,原因为脱甲基作用导致菲的相对含量变化不规律,故MPI-1不能预测原油或烃源岩成熟度。热成熟度能够改变甲基菲系列化合物生成的速度,相关参数如MPR和MPI-3与成熟度仍有良好的相关关系。3.因原油中无镜质体,无法直接测定成熟度,通常使用分子地球化学中提取的经验公式估算镜质体反射率。但本文研究证实其只在局部成立且与实测值有一定差距,只能指示样品成熟度变化趋势,未经校正时不能作为判定成熟度的依据。4.柴达木盆地在柴页2井石炭系中首次发现油气,这对该区寻找战略油气接替层系具有重要的意义。原油饱和烃以低碳数正构烷烃为主,甾萜烷分布完整,综合各类地球化学参数判定为混合生源。芳香烃馏分以烷基萘和烷基菲为主,含少量芳香甾和其他多环芳烃,经各类地球化学参数如MDR、MPR等换算得到的等效镜质体反射率在0.8%到1.0%之间,处于中低成熟阶段。天然气样品为油型气,甲烷的碳同位素换算出等效镜质体反射率为1.77%。受压力、矿物质含量和活化能等多种因素影响,烃源岩与原油样品热演化过程存在差异,致使中低成熟度原油依旧可保存在高成熟烃源岩地层中。本文运用分子地球化学数据对研究区样品进行详细刻画,明确不同化合物中各组分含量随成熟度变化的机理,揭示了低成熟原油与高成熟烃源岩差异演化的机制,指导高成熟地层的勘探与开发。
李文奇[7](2020)在《南堡凹陷拾场次洼沙三4亚段页岩孔隙发育及演化特征》文中研究说明非常规页岩油气资源作为常规油气资源的重要接替,具有巨大的资源潜力。寻找有利页岩储层是非常规页岩油气勘探的核心工作之一,而页岩微—纳米孔隙的识别、分类和定量,孔隙发育及演化规律的认识是页岩储层研究的难点和重点,对阐明页岩油气赋存机理及富集规律具有重要意义。本文以渤海湾盆地黄骅坳陷南堡凹陷拾场次洼Es34富有机质页岩为例,利用场发射扫描电镜、高压压汞和氮气吸附等实验技术,结合有机岩石学鉴定、岩石热解、全岩X射线衍射(XRD)及油气族组分测试等辅助实验,精细刻画了页岩孔隙发育特征,重点研究了页岩储集空间的形态、结构、大小和孔径分布特征。南堡凹陷拾场次洼Es34页岩孔隙空间可以划分为矿物基质孔(粒间孔、晶间孔、溶蚀孔)、有机质孔及裂缝。孔隙度5.8%~12.1%,平均8.8%;渗透率1.27~4.63m D,平均2.59m D。高压压汞分析揭示孔径分布范围在0.005~100μm;孔喉半径平均值在0.044~0.359μm。选择研究区低成熟度页岩样品开展了半封闭半开放体系下的热压生烃模拟实验,结合扫描电镜观测和高压压汞-氮气吸附法联合测定对六个温度点的模拟样品进行孔隙镜下观察和全孔径表征,从定性和定量两个方面系统探讨了页岩热模拟演化过程中页岩孔隙演化特征,同时对热模拟实验后样品进行了岩石热解等有机地化分析测试,将孔隙演化与生烃热演化过程更好地联系起来。进一步探讨了页岩孔隙发育演化的控制因素,并结合页岩孔隙发育特征和热模拟实验样品孔隙演化特征,建立了拾场次洼沙三4亚段页岩孔隙发育演化模式,划分为四个阶段:未成熟-低成熟阶段(Ro<0.7%)由压实作用控制,孔隙系统体积减小;成熟阶段(0.7%<Ro<1.2%)由压实作用和有机质生烃作用共同控制,总孔体积先减小后增大,液态烃和沥青滞留效应对孔隙起到显着影响;高成熟阶段(1.2%<Ro<2.0%)孔隙系统由有机质生烃作用和矿物转化共同控制,总孔体积和比表面积先缓慢上升,后迅速上升;过成熟阶段孔隙系统趋于稳定。
王永臻[8](2020)在《冀中坳陷东北部石炭-二叠系煤成气资源潜力分析及有利区预测》文中进行了进一步梳理研究区位于冀中坳陷东北部,石炭-二叠系为一套海陆交互相沉积,煤系地层广泛发育。印支、燕山和喜山运动使该套地层抬升、隆起,广大地区因遭受强烈的风化作用而剥蚀殆尽,仅在斜坡或早期凹陷中残存下来,成为石炭-二叠系残留盆地。石炭-二叠系煤系地层沉积后经多期构造运动的改造,煤成气成藏变的复杂多样,给煤成气勘探带来较大的困难,石炭-二叠纪煤系地层生烃能力及成藏规律研究成为下一步煤成气勘探开发决策的关键。以往研究主要是在单一学科、单一构造单元开展的,比较微观,把整个工区作为一个研究对象进行宏观分析,运用煤成气成藏新理论和新思想开展综合研究,总结煤成气藏成藏条件及分布规律还不够深入,对煤成气有利区预测尚未形成公认的评价模型。在对前期勘探数据和前人认识的基础上,对研究区内石炭-二叠系煤系地层开展构造演化特征研究,恢复研究区沉积古环境动态过程,并对煤系地层沉积特征进行详细描述。针对石炭-二叠系煤系烃源岩、储层、盖层和圈闭条件开展定性和半定量评价,重点对石炭-二叠系烃源岩和圈闭条件进行精细评价。通过对已发现煤成气藏分析,总结煤成气藏特点。采用烃源岩生烃期分析,结合流体包裹体、构造背景综合判断法对研究区煤成气藏天然气充注时间和期次开展一系列研究,从而对研究区各构造单元成藏要素配置条件进行评价。基于研究区煤成气藏成藏特征及成藏要素配置条件,总结煤成气典型成藏模式和成藏主控因素,并最终指出研究区内各构造单元勘探方向。在对石炭-二叠系煤系烃源岩评价的基础上,通过对各构造单元选取典型井开展埋藏史、热史和成熟史模拟,对研究区内煤系烃源岩生烃演化类型进行划分。通过对大城地区36#煤样开展热模拟实验,测试煤系烃源岩生烃气能力,开展煤成气生气量、聚气量评价。研究表明,研究区石炭-二叠系煤系烃源岩生烃气3.97万亿方,其中一次生烃气1245亿方,二次生烃气3.85万亿方,二次生烃作用明显强于一次生烃;石炭-二叠系煤系烃源岩烃气聚集量4196.42亿方。表明研究区石炭-二叠系煤系地层具备大量生气的物质基础。为更有效指导下一步煤成气勘探工作,最后采用层次分析法开展研究区煤成气有利圈闭优选,建立了研究区有利圈闭预测综合评价模型。通过构造层次分析结构、判断矩阵、一致性检验、层次单排序和总排序最终给出相对可信的有利圈闭排序。最为有利的煤成气圈闭依次为大1井南圈闭、大参1井东圈闭和苏4东圈闭。针对研究区内石炭-二叠系煤系地层开展煤成气圈闭级别优选尚属首次,运用现代综合评价方法-层次分析法开展煤成气有利圈闭优选区是一次学科交叉的科学探索。
秦婧[9](2020)在《柴达木盆地中侏罗世湖-沼相沉积有机地球化学研究-鱼卡凹陷大煤沟组为例》文中进行了进一步梳理中侏罗世中、晚期是全球范围发生大规模古气候变迁和古植物类型变化的时期。柴北缘地区受到伸展坳陷及燕山运动早期构造活动的影响,形成了一套湖-沼相煤、碳质泥岩、油页岩、暗色泥岩4类岩性叠置或互层的富有机质沉积—大煤沟组。开展湖-沼相富有机质沉积的研究,不仅在理论上对于确定古气候、古植物和古环境变化的地球化学记录,重建地质时期的环境-生物-沉积有机质的相互耦合关系有重要科学价值,而且在实践中对于确定湖沼相不同类型烃源岩的特征和发育分布规律,预测和评价烃源岩生烃潜力也有重要的意义。本论文以柴页1井中侏罗统大煤沟组为研究对象,研究工作历时四年,对大煤沟组122个岩心样品进行了包括XRD、ICP-MS、GC-MS、镜质体反射率和稳定碳同位素在内的1430余项次分析测试,以及全井测井资料解释和层序地层学分析。采用有机岩石学、生物标志地球化学、元素地球化学、沉积学和岩石物理学等多学科紧密结合的方法,在层序地层格架分析的基础上,通过剖析大煤沟组的矿物组成、显微组分组成及微量元素分布的旋回变化特征,探讨了控制大煤沟组富有机质沉积形成的古气候、古植被、沉积环境等方面因素,构建了地球化学特征与沉积旋回、古气候-古生物变化的响应关系,并进一步评价了大煤沟组烃源岩的倾油、倾气性。取得的主要成果和创新性认识如下:1.沉积相和层序地层格架分析揭示,大煤沟组湖-沼相沉积呈三角洲平原—三角洲前缘—半深湖—深湖—半深湖—浅湖的不完整旋回结构。2.不同沉积微相矿物组成和微量元素含量特征反映,以大煤沟组七段中上部的深湖相为界,古气候出现湿润—干旱—湿润的旋回变化。大煤沟组七段油页岩属于干旱气候下的深湖相沉积,深湖、半深湖亚相及河漫沼泽微相具有相对较高的古生产力。3.揭示了中侏罗世湖-沼相沉积的显微组分组成特征及其旋回变化规律。受沉积环境和古气候旋回控制下的生源输入、氧化-还原条件变化的影响,从三角洲平原相—三角洲前缘相—半深湖相—深湖相,高等植物来源显微组分含量逐渐降低。深湖相显微组分以腐泥组和壳质组为主,具有高伽马蜡烷含量,反映干旱气候近源湖泊水生藻类和陆生高等植物双重生源输入的特点。萜类化合物卡达烯、惹稀和西蒙内利烯相对含量的剖面变化,应与构成中侏罗世主要高等植物生源物质的针叶类的生境和/或群落对古气候旋回的响应有关。4.通过微量元素、生物标志物和有机岩石学观察分析,确定了不同沉积微相水体环境及旋回变化特征。三角洲-深湖相水体环境由富氧逐渐变为贫氧、缺氧;三角洲前缘水下分流间湾微相存在缺氧分层水体环境;半深湖相时期为具有湖泊水体内循环的清澈水体环境;深湖相为强烈分层、还原的微咸水环境。5.通过对镜质体反射率频率分布特征及其与岩性旋回、沉积环境的关系分析,阐明了长期困扰有机岩石学家,关于中国西北地区侏罗纪煤系镜质体反射率值异常的地质原因。指出高等植物物质生源、搬运距离(表现为显微组分组成)和沉积环境(表现为氢指数变化)直接导致了镜质体反射率的增强或抑制。6.提供了详细的中侏罗世湖泊-沼泽环境演变的地球化学记录,基于此,确定了沉积旋回背景下有机质富集的主控因素,并建立了湖-沼环境富有机质沉积的成因模式。提出有机质生源和环境共同控制了湖-沼相沉积物中有机质的数量(TOC)和倾油气性(显微组分组成),中侏罗世大煤沟组的倾油性烃源岩主要发育在炎热干旱气候条件下的深湖相和湿润气候条件下的泥炭沼泽微相和水下分流间湾微相。
黄文魁[10](2019)在《库车坳陷煤系烃源岩生烃动力学和地球化学特征研究》文中进行了进一步梳理库车坳陷范围内广泛蕴含油气藏,其油气主要来源于区内三叠-侏罗系煤系地层。烃源岩分布于中–上三叠统克拉玛依组(T2–3k)、上三叠统黄山街组(T3h)和塔里奇克组(T3t)、下侏罗统阳霞组(J1y)、中侏罗统克孜勒努尔组(J2k)和恰克马克组(J2q),其中塔里奇克组(T3t)、阳霞组(J1y)和克孜勒努尔组(J2k)为含煤沉积。如何合理评价煤系烃源岩的生烃潜力仍然是一个未被解决的问题,本论文通过对库车坳陷三叠-侏罗系七个煤样进行高压釜-黄金管热解实验,结合Rock-Eval热解分析,确定煤样生烃潜力和生烃动力学参数。七个煤样均采自煤矿。其中三个煤样JKC1、JKC2和JKC3位于中侏罗统克孜勒努尔组(J2k),岩石热解(Rock–Eval)指标HI和Tmax分别介于57183 mg HC/g TOC和424437?C,%Ro介于0.580.66%之间。其他四个煤样TTC1、TTC4、TTC11和TTC18位于上三叠统塔里奇克组(T3t),HI和Tmax分别介于223278 mg HC/g TOC和433458?C,%Ro介于0.580.74%之间。七个煤样的油气产率和生烃动力学特征可归纳为:(1)塔里奇克组(T3t)的四个煤样TTC1、TTC4、TTC11和TTC18最大油产率介于46.39–87.50 mg/g TOC之间,最大产气率介于107.20120.94 mg/g TOC之间;克孜勒努尔组(J2k)的三个煤样JKC1、JKC2和JKC3最大油产率介于14.3–39.78 mg/g TOC之间,最大产气率介于70.195.06 mg/g TOC之间。(2)七个煤样在生油窗范围内的质量平衡结果说明,由岩石热解(Rock–Eval)分析释放出来的组分,只有3853%对油气生成有贡献,而其他4762%则重新缩合到干酪根中。(3)在EASY%Ro大于1.87%的高成熟阶段,七个煤样残余固体的生气潜力非常相似,大体上比QI=(S1+S2)/TOC值高2040 mg HC/g TOC,这一方面是由于岩石热解(Rock–Eval)分析和金管实验所能达到的最大成熟度有较大的差异,前者EASY%Ro为2.25%,而后者EASY%Ro为4.44%,另一方面是由于两类实验气态烃的生成机制不同。(4)三叠系塔里奇克组四个煤样均为有效油源岩,最大油产率高于排油门限(40 mg/g TOC)。四个煤样生油的加权平均活化能介于51.6452.96 kcal/mol之间,频率因子介于9.61×1012 s-1至1.70×1013 s-1之间。四个煤样生油活化能的分布非常集中,表明煤样生油母质相似。此外,也与煤样生烃特征有关,煤的生烃母质(束缚态烷烃)只有少部分裂解生成油分子,大部分仍结合在干酪根中,成为生气母质。(5)侏罗系克孜勒努尔组三个煤样的生气活化能加权平均值介于64.7265.33 kcal/mol之间,频率因子介于8.25×1013 s-1至1.22×1014 s-1之间。三叠系塔里奇克组四个煤样的生气活化能加权平均值介于62.7865.02 kcal/mol之间,频率因子介于8.21×1013 s-1至1.67×1014 s-1之间。七个煤样均具有晚期生气的特征:在EASY%Ro达到2.19%时,三个侏罗系煤样和四个三叠系煤样的生气转化率约为32%和44%,主体生气过程发生在高过成熟阶段(EASY%Ro>2.19%之后)。(6)分别通过三个侏罗系煤样和四个三叠系煤样的平均油产率和产气率,确定两个代表性煤样JKC和TTC的生油和生气动力学参数,预测在5?C/My升温条件下JKC和TTC的生烃过程。代表性煤样JKC和TTC分别在EASY%Ro为1.76%和1.59%时,产气率达到排气门限(20 mg/g TOC),成为有效气源岩。库车坳陷发现了大量的气田,主要归因于煤系烃源岩具有很高的成熟度,主体部分%Ro>2.0%,同时具有优质盖层-巨厚的膏盐盖层。库车坳陷的烃源岩地球化学特征已有很多人做过研究,但大多都是针对一两套地层,本论文将通过常规的烃源岩评价指标及分子和同位素地球化学组成对库车坳陷三叠系–侏罗系系煤系烃源岩的地球化学特征作一个系统的分析,对比各地层地表剖面烃源岩之间以及同层煤矿煤样和地表剖面烃源岩之间的地球化学特征的差异。这部分研究得到以下认识:(1)岩石热解和氯仿沥青“A”分析表明侏罗系克孜勒努尔组地表剖面烃源岩的有机质类型为Ⅲ型;侏罗系阳霞组地表剖面烃源岩主要为Ⅲ型有机质,含少量Ⅱ2型有机质;三叠系塔里奇克组地表剖面烃源岩的有机质类型主要为Ⅱ2和Ⅱ1型;三叠系黄山街组地表剖面烃源岩主要为Ⅲ型有机质。(2)中侏罗统克孜勒努尔组煤矿煤样%Ro值介于0.58%0.66%之间,岩石热解(Rock–Eval)参数Tmax值介于424°C437°C之间,地表剖面烃源岩样品Tmax值介于428°C451°C之间,两类样品均处于低成熟阶段。下侏罗统阳霞组地表剖面烃源岩样品Tmax值介于436°C487°C之间,处于低成熟至成熟阶段。上三叠统塔里奇克组煤矿煤样%Ro值介于0.58%0.96%之间,Tmax值介于433°C496°C之间,地表剖面烃源岩样品Tmax值介于447°C585°C之间,两类样品处于生油高峰阶段。上三叠统黄山街组地表剖面烃源岩样品Tmax值介于442°C458°C之间,处于低成熟至成熟阶段。(3)对库车坳陷三叠系–侏罗系煤矿煤样及库车河剖面三叠系–侏罗系烃源岩的饱和烃色谱研究表明,从晚三叠世至中侏罗世这段时期库车坳陷的沉积环境从偏氧化的浅水湖相演变为弱还原–弱氧化的半深湖相,最后转变为强氧化的沼泽环境。侏罗系克孜勒努尔组煤矿煤样(JKC)的Pr/Ph比值比三叠系塔里奇克组煤矿煤样(TTC)高,同时侏罗系的地表剖面烃源岩(JKS和JYS)的Pr/Ph比值也比三叠系地表剖面烃源岩(TTS和THS)高,这反应出二者不同的沉积环境,整体上看侏罗系的沉积环境较三叠系而言氧化性更强。(4)对库车坳陷煤矿煤样及库车河剖面三叠系–侏罗系烃源岩的饱和烃GC–MS研究表明,三叠系–侏罗系煤矿煤样和地表剖面烃源岩样品的三环萜烷以低碳数为主,基本上以C19三环萜烷为主峰,呈现C19、C20、C21的递减趋势,C24四环萜烷相对含量很高;藿烷的含量远高于甾烷;伽马蜡烷相对含量都很低;甾烷分布以C29甾烷ααα20R占绝对优势,C27甾烷ααα20R和C28甾烷ααα20R的相对含量低。具有陆源生烃母质特征。塔里奇克组地表剖面烃源岩样品其他层位地表剖面样品有明显差异,具有相对较高的三环萜烷/藿烷比值、C30重排藿烷和伽玛蜡烷相对含量、较低的藿烷/甾烷比值,表明上三叠统塔里奇克组烃源岩的沉积环境是有一定菌藻类输入的弱还原的湖相沉积。成熟度相关生物标志化合物参数表明塔里奇克组烃源岩成熟度较高,其他层位成熟度较低,与Tmax数据一致。(5)正构烷烃单体烃碳同位素数据显示从上三叠统黄山街组至中侏罗统克孜勒努尔组,地表剖面烃源岩的正构烷烃单体烃碳同位素分布是逐渐变重的趋势,表明逐渐增强的陆源高等植物有机质的输入。
二、源岩活化能分布最小值与有机质成熟度的关系(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、源岩活化能分布最小值与有机质成熟度的关系(论文提纲范文)
(1)鄂尔多斯盆地长7段页岩生烃动力学特征与原位转化温度条件(论文提纲范文)
0 引言 |
1 样品、实验与计算方法 |
1.1 样品 |
1.2 热解实验 |
1.3 动力学计算方法 |
2 结果 |
3 讨论 |
3.1 成熟度对活化能的影响 |
3.2 原位转化最佳加热温度条件探讨 |
4 结论 |
(2)延安探区山西组细粒沉积物生烃及页岩气富集特征(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 选题目的及意义 |
1.2 项目依托 |
1.3 国内外研究现状 |
1.3.1 研究区概况 |
1.3.2 生烃模拟 |
1.3.3 生烃动力学 |
1.3.4 页岩气富集模式 |
1.4 主要研究内容及技术路线 |
1.5 完成的主要工作量 |
第二章 区域地质概况 |
2.1 地层发育特征 |
2.2 沉积相特征 |
2.2.1 沉积相标志 |
2.2.2 古沉积环境 |
2.3 古生物及古生产力 |
2.3.1 古生物 |
2.3.2 古生产力 |
第三章 山西组页岩地球化学特征 |
3.1 页岩的空间展布特征 |
3.2 页岩地球化学特征 |
3.2.1 有机质丰度 |
3.2.2 有机质类型 |
3.2.3 有机质成熟度 |
3.3 页岩气特征 |
3.3.1 页岩气地球化学特征 |
3.3.2 页岩气成因 |
第四章 泥页岩生烃特征 |
4.1 生烃模拟方法 |
4.2 生烃模拟实验 |
4.2.1 样品采集和制备 |
4.2.2 实验方法和原理 |
4.2.3 实验流程 |
4.2.4 实验产物收集与定性 |
4.3 实验结果分析 |
第五章 页岩气富集模式 |
5.1 不同气藏赋存特征及山西组岩性组合 |
5.1.1 不同岩相中页岩气赋存特征 |
5.1.2 山西组岩性叠置 |
5.2 山西组页岩气富集模式 |
5.2.1 页岩气富集条件 |
5.2.2 页岩气富集模式 |
结论 |
致谢 |
参考文献 |
攻读学位期间参加科研情况及获得的学术成果 |
(3)东营凹陷页岩可动油评价及留烃机理(论文提纲范文)
摘要 |
Abstract |
第一章 引言 |
1.1 选题依据 |
1.1.1 国内外研究概况 |
1.1.2 课题来源及意义 |
1.2 研究方案 |
1.2.1 研究方法及主要研究内容 |
1.2.2 研究方案与技术路线 |
1.2.3 主要工作量 |
第二章 渤海湾盆地东营凹陷区域地质背景 |
2.1 东营凹陷区域构造背景 |
2.2 东营凹陷形成与演化特征 |
2.3 东营凹陷构造特征 |
2.4 东营凹陷地层特征 |
2.5 东营凹陷烃源岩特征 |
2.5.1 有机质丰度 |
2.5.2 有机质类型 |
2.5.3 有机质成熟度 |
第三章 生烃动力学理论与实验技术 |
3.1 化学动力学基础 |
3.1.1 基元反应、简单反应和复杂反应 |
3.1.2 化学反应速度方程式 |
3.1.3 温度对反应速度的影响 |
3.1.4 活化能及其对应反应速度的影响 |
3.2 生烃动力学模型 |
3.2.1 总包反应动力学模型 |
3.2.2 串联反应模型 |
3.2.3 平行一级反应动力学模型 |
3.3 生烃动力学模型的适用性及存在问题 |
3.3.1 生烃动力学模型的局限性 |
3.3.2 生烃动力学模型存在问题 |
3.4 生烃动力学热模拟系统 |
3.4.1 开放系统 |
3.4.2 半封闭系统 |
3.4.3 封闭系统 |
第四章 黄金管高压釜封闭体系生烃动力学研究 |
4.1 实验装置 |
4.2 实验方法 |
4.2.1 提取干酪根 |
4.2.2 黄金管封闭体系热模拟实验 |
4.2.3 产物提取 |
4.3 样品地球化学特征 |
4.4 产物产率特征 |
4.4.1 总烃产率特征 |
4.4.2 热解C_1-C_5气态烃和C_6-C_(14)轻烃产率特征 |
4.5 干酪根生烃动力学参数 |
第五章 原油组分分离及组分生成动力学 |
5.1 原油族组分分离方法简介 |
5.1.1 柱色谱法(Column Chromatography,CC) |
5.1.2 薄层色谱法(Thin Layer Chromatography,TLC) |
5.1.3 高压液相色谱法 |
5.1.4 微型柱色谱 |
5.2 实验结果与讨论 |
5.3 本章小结 |
第六章 烃源岩留烃实验及留烃机理 |
6.1 留烃实验发展 |
6.1.1 油气初次运移的研究状况 |
6.1.2 有机质留烃实验发展现状 |
6.1.3 有机质溶胀实验方法简介 |
6.2 有机质溶胀实验方法及实验过程 |
6.2.1 质量法 |
6.2.2 溶剂的选择 |
6.2.3 溶胀实验及原油在残余干酪根的滞留量 |
6.3 岩石中有机质组成及性质 |
6.3.1 岩石中粘土矿物与有机质 |
6.3.2 泥岩中有机质特征 |
6.3.3 有机质的物理化学特征 |
6.4 无机矿物吸附有机质能力 |
6.4.1 东营凹陷矿物含量 |
6.4.2 矿物特征 |
6.4.3 矿物分离 |
6.4.4 矿物表面吸附 |
6.5 生烃过程中干酪根结构变化—红外光谱分析 |
6.5.1 红外光谱的基本概念 |
6.5.2 实验方法 |
6.5.3 红外光谱图谱解析 |
6.5.4 干酪根红外光谱分析 |
6.5.5 结果讨论 |
6.6 留烃机理 |
6.7 本章小结 |
第七章 东营凹陷页岩可动油评价 |
7.1 东营凹陷埋藏史 |
7.2 东营凹陷烃源岩生留烃史评价 |
7.2.1 留烃曲线及动力学参数 |
7.2.2 封闭体系下烃源岩留烃史评价 |
7.3 东营凹陷页岩油可动油评价 |
7.3.1 影响储层原油滞留量参数 |
7.3.2 页岩可动油评价模型 |
7.4 本章小结 |
第八章 结论 |
8.1 结论 |
8.2 论文创新点 |
8.3 本文的不足之处及今后工作建议 |
8.3.1 不足之处 |
8.3.2 今后的工作建议 |
参考文献 |
作者简历及攻读学位期间发表的学术论文与研究成果 |
致谢 |
(4)鄂尔多斯盆地延长组优质烃源岩对油气成藏的贡献 ——以下寺湾探区为例(论文提纲范文)
摘要 |
abstract |
第一章 前言 |
1.1 选题目的和意义 |
1.2 项目依托 |
1.3 国内外研究现状 |
1.3.1 区域地质研究现状 |
1.3.2 优质烃源岩评价 |
1.3.3 烃源岩测井识别 |
1.3.4 油源对比 |
1.3.5 生烃模拟 |
1.4 研究内容与创新点 |
1.5 技术路线 |
1.6 主要完成的工作量 |
第二章 区域地质概况 |
2.1 地层的划分与对比 |
2.1.1 延长组岩性段的划分 |
2.1.2 延长组标志层选择 |
2.2 构造格局与构造演化 |
2.3 研究区油气地质条件分析 |
第三章 优质烃源岩有机地球化学特征及展布 |
3.1 烃源岩测井识别 |
3.2 烃源岩展布 |
3.2.1 长7 段泥岩厚度及有机碳含量展布图 |
3.2.2 长9 段泥岩厚度及有机碳含量展布图 |
3.3 优质烃源岩评价 |
3.3.1 烃源岩有机质丰度 |
3.3.2 烃源岩有机质类型 |
3.3.3 烃源岩有机质成熟度 |
第四章 原油成因类型及油源对比 |
4.1 烃源岩生物标志物特征 |
4.1.1 烷烃色谱特征 |
4.1.2 甾、萜烷色谱特征 |
4.2 不同层系原油特征及族群划分 |
4.2.1 烷烃色谱特征 |
4.2.2 萜烷、甾烷化合物特征 |
4.3 油源对比 |
4.3.1 族组成油-岩对比 |
4.3.2 烷烃系列油-岩对比 |
4.3.3 甾、萜烷类油-岩对比 |
第五章 烃源岩生烃量的计算 |
5.1 生烃模拟实验 |
5.1.1 开放体系热模拟实验 |
5.1.2 封闭体系热模拟实验 |
5.1.3 半封闭体系热模拟实验 |
5.2 生烃动力学参数选取 |
5.3 生烃量的计算 |
5.3.1 长7 段生排烃强度分布特征 |
5.3.2 长9 段生排烃强度分布特征 |
5.3.3 长7、长9 段烃源岩生烃量计算 |
5.4 烃源岩成藏贡献 |
5.4.1 长4+5、长6 及长8 现今油藏分布特征 |
5.4.2 优质烃源岩与贡献原油生标参数对比 |
结论 |
致谢 |
参考文献 |
攻读学位期间参加科研情况及获得的学术成果 |
(5)琼东南盆地深水区烃源岩地球化学特征、生烃演化及气源追踪(论文提纲范文)
摘要 |
abstract |
第1章 前言 |
1.1 研究目的与意义 |
1.2 研究现状 |
1.2.1 琼东南盆地深水区勘探现状 |
1.2.2 烃源岩研究现状 |
1.2.3 压力对有机质生烃演化作用的影响 |
1.2.4 存在问题 |
1.3 研究内容、技术路线与工作量 |
1.3.1 研究内容 |
1.3.2 研究技术路线 |
1.3.3 完成的工作量 |
1.4 取得的创新性认识 |
第2章 琼东南盆地深水区地质概况 |
2.1 盆地基底结构 |
2.2 新生代盆地构造演化 |
2.3 中央峡谷的形成机制 |
2.4 超压体系形成机制 |
第3章 烃源岩地球化学与有机岩石学特征 |
3.1 实验方法 |
3.1.1 样品清洗处理 |
3.1.2 有机地球化学分析 |
3.1.3 有机岩石学分析 |
3.1.4 主微量元素分析 |
3.2 烃源岩有机质丰度与类型 |
3.2.1 有机质丰度 |
3.2.2 HI指数与生烃潜力 |
3.3 典型烃源岩有机岩石学特征 |
3.3.1 崖城组海陆过渡相样品有机岩石学特征 |
3.3.2 崖城组浅海相样品显微组分 |
3.3.3 陵水组浅海相样品有机岩石学特征 |
3.4 不同地层有机质碳同位素分布特征 |
3.4.1 崖城组样品有机质碳同位素分布特征 |
3.4.2 陵水组样品有机质碳同位素分布特征 |
3.4.3 三亚组样品有机质碳同位素分布特征 |
3.4.4 有机质碳同位素变化规律与主控因素 |
3.5 烃源岩形成古环境与发育模式 |
3.5.1 生物标志物与沉积环境 |
3.5.2 主微量元素组成特征 |
第4章 海陆过渡相与海相烃源岩生烃动力学特征 |
4.1 研究样品与实验方法 |
4.1.1 研究样品 |
4.1.2 热模拟实验与产物分析 |
4.1.3 生烃与甲烷碳同位素分馏动力学参数拟合 |
4.2 不同烃源岩生烃动力学特征 |
4.2.1 崖城组烃源岩生烃动力学特征 |
4.2.2 陵水组烃源岩生烃动力学特征 |
4.3 压力对烃类气体生成的影响 |
4.3.1 压力对烃类气体生成量的影响 |
4.3.2 压力对生烃动力学参数的影响 |
4.4 甲烷碳同位素分馏动力学特征 |
4.4.1 不同类型烃源岩甲烷碳同位素分馏特征 |
4.4.2 压力对不同类型烃源岩甲烷碳同位素分馏动力学参数的影响 |
4.4.3 甲烷碳同位素组成控制因素 |
4.5 本章小结 |
第5章 典型凹陷生烃动力学与成藏特征 |
5.1 陵水凹陷天然气生成与成藏特征 |
5.1.1 石油地质背景 |
5.1.2 天然气与凝析油地球化学特征 |
5.1.3 天然气成藏时间 |
5.1.4 天然气生成动力学模拟与天然气来源 |
5.2 松南低凸起天然气成因与成藏 |
5.2.1 石油地质背景 |
5.2.2 天然气地球化学特征 |
5.2.3 天然气生成动力学模拟与天然气来源 |
5.3 长昌凹陷天然气成因与成藏 |
5.3.1 石油地质背景 |
5.3.2 天然气地球化学特征 |
5.3.3 生烃动力学特征 |
5.4 本章小结 |
第6章 主要认识、结论与不足 |
参考文献 |
附录 崖城组与陵水组样品元素地球化学参数 |
致谢 |
作者简历及攻读学位期间发表的学术论文与研究成果 |
(6)柴达木盆地东部石炭系烃源岩及原油分子地球化学表征(论文提纲范文)
摘要 |
abstract |
1 引言 |
1.1 研究目的 |
1.2 研究现状 |
1.3 研究内容及方法 |
1.4 技术路线与工作量 |
1.5 创新点 |
2 地质概况 |
2.1 区域地质概况 |
2.2 研究区构造单元划分 |
2.3 研究区沉积特征及演化 |
2.4 研究区石炭系烃源岩展布 |
3 样品分析及烃源岩宏观地球化学特征 |
3.1 样品与实验 |
3.2 烃源岩宏观地球化学特征 |
3.3 本章小结 |
4 烃源岩分子地球化学表征 |
4.1 饱和烃特征 |
4.2 芳香烃特征 |
4.3 芳烃成熟度参数估算等效反射率的有效性探讨 |
4.4 本章小结 |
5 原油样品地球化学特征 |
5.1 饱和烃地球化学特征 |
5.2 芳烃分布特征 |
5.3 天然气样品成熟度特征 |
5.4 原油与烃源岩的差异演化 |
5.5 本章小结 |
6 结论 |
致谢 |
参考文献 |
博士在读期间的科研成果 |
(7)南堡凹陷拾场次洼沙三4亚段页岩孔隙发育及演化特征(论文提纲范文)
摘要 |
ABSTRACT |
第1章 引言 |
1.1 课题来源 |
1.2 选题目的及意义 |
1.3 国内外研究现状 |
1.3.1 页岩孔隙研究进展 |
1.3.2 页岩孔隙表征方法进展 |
1.3.3 页岩发育及演化研究进展 |
1.4 存在问题 |
1.5 研究内容与技术路线 |
1.5.1 研究内容 |
1.5.2 技术路线 |
1.6 完成的主要工作量 |
1.7 论文创新性认识 |
第2章 研究区地质概况 |
2.1 研究区构造单元划分 |
2.2 构造沉积演化 |
2.3 沉积地层特征 |
第3章 页岩岩石学及地球化学特征 |
3.1 页岩岩石学特征 |
3.1.1 岩性特征 |
3.1.2 矿物组成特征 |
3.2 页岩地球化学特征 |
3.2.1 有机质丰度 |
3.2.2 有机质类型 |
3.2.3 有机质成熟度 |
第4章 页岩孔隙发育特征 |
4.1 页岩孔隙类型 |
4.2 页岩孔隙结构 |
第5章 热模拟实验中页岩孔隙演化特征 |
5.1 热模拟实验体系选择 |
5.2 热模拟实验设计 |
5.2.1 实验仪器与方法 |
5.2.2 实验设计流程 |
5.3 实验结果及分析 |
5.3.1 生排烃特征 |
5.3.2 扫描电镜图像观察 |
5.3.3 孔隙结构特征 |
5.4 热模拟实验中孔隙演化特征 |
第6章 页岩孔隙发育及演化主控因素和演化模式 |
6.1 页岩孔隙发育及演化主控因素 |
6.1.1 沉积作用 |
6.1.2 成岩作用 |
6.1.3 有机质生烃作用 |
6.2 页岩孔隙发育演化模式 |
第7章 结论 |
参考文献 |
致谢 |
攻读学位期间取得学术成果 |
(8)冀中坳陷东北部石炭-二叠系煤成气资源潜力分析及有利区预测(论文提纲范文)
摘要 |
Abstract |
1 前言 |
1.1 选题目的及意义 |
1.2 国内外研究现状 |
1.3 研究内容和技术路线 |
1.4 创新性成果与认识 |
2 地质特征 |
2.1 构造特征 |
2.1.1 区域构造背景 |
2.1.2 构造演化特征 |
2.1.3 构造单元划分 |
2.2 沉积特征 |
2.2.1 沉积环境演化 |
2.2.2 主要沉积地层 |
3 成藏条件评价 |
3.1 烃源岩评价 |
3.1.1 有机质类型 |
3.1.2 有机质丰度 |
3.1.3 成熟度 |
3.1.4 展布特征 |
3.2 储层 |
3.2.1 储层特征 |
3.2.2 储层评价 |
3.3 盖层条件 |
3.3.1 盖层特征 |
3.3.2 盖层评价 |
3.4 圈闭评价 |
3.4.1 圈闭类型 |
3.4.2 圈闭评价 |
4 成藏规律研究 |
4.1 煤成气成藏特点 |
4.2 成藏要素配置 |
4.3 成藏主控因素 |
4.4 典型成藏模式 |
4.5 勘探方向分析 |
5 煤成气资源潜力 |
5.1 埋藏史、热史模拟 |
5.1.1 模拟参数求取 |
5.1.2 模拟结果 |
5.1.3 热演化特征 |
5.2 煤成气资源量评价 |
5.2.1 生排烃模型及计算方法 |
5.2.2 生烃气量计算 |
5.2.3 排烃气量计算 |
5.3 结果讨论 |
6 有利区预测 |
6.1 研究方法 |
6.1.1 综合评价方法 |
6.1.2 评价方法选择 |
6.2 优选模型 |
6.2.1 指标体系 |
6.2.2 评价模型 |
6.3 评价结果与分析 |
6.3.1 评价结果 |
6.3.2 讨论 |
7 结论 |
致谢 |
参考文献 |
附录 |
(9)柴达木盆地中侏罗世湖-沼相沉积有机地球化学研究-鱼卡凹陷大煤沟组为例(论文提纲范文)
摘要 |
ABSTRACT |
创新点 |
第1章 绪论 |
1.1 项目来源 |
1.2 研究目的和意义 |
1.3 国内外研究现状 |
1.3.1 侏罗系湖-沼相(含煤地层)沉积及环境变化特征 |
1.3.2 煤及含煤地层的有机地球化学 |
1.3.3 柴达木盆地侏罗系煤系地球化学研究现状及存在问题 |
1.4 研究内容 |
1.4.1 大煤沟组沉积旋回及层序地层格架 |
1.4.2 岩石学与岩石化学特征 |
1.4.3 有机岩石学与有机地球化学特征 |
1.4.4 大煤沟组湖-沼相富有机质沉积的成因 |
1.4.5 湖-沼相富有机质沉积的倾油气性 |
1.5 研究思路与技术路线 |
1.6 论文完成工作量及主要成果认识 |
1.6.1 论文完成工作量 |
1.6.2 主要成果认识 |
第2章 区域地质概况 |
2.1 区域构造特征 |
2.2 地层特征 |
2.2.1 柴北缘地层及展布 |
2.2.2 柴北缘沉积特征 |
2.3 研究区位置 |
第3章 样品采集及实验分析方法 |
3.1 柴页1 井概况 |
3.2 样品采集 |
3.3 实验分析方法 |
3.3.1 岩石化学分析 |
3.3.2 有机岩石学分析 |
3.3.3 有机地球化学分析 |
第4章 大煤沟组湖-沼相的沉积旋回特征 |
4.1 大煤沟组岩性特征及层序地层格架 |
4.1.1 岩性特征及组合 |
4.1.2 测井曲线特征与层序地层格架 |
4.2 岩石矿物组成特征 |
4.2.1 主要矿物组成 |
4.2.2 粘土矿物组成 |
4.2.3 沉积旋回背景下的矿物组成特征 |
4.3 微量元素分布 |
4.3.1 稀土元素与物源特征 |
4.3.2 元素地球化学的沉积环境指示意义 |
4.3.3 湖-沼相沉积时期的古生产力 |
第5章 湖-沼相沉积物的有机岩石学特征 |
5.1 显微组分分类 |
5.2 不同岩性沉积物的显微组分组成 |
5.2.1 泥页岩显微组分特征及组成 |
5.2.2 油页岩显微组分特征及组成 |
5.2.3 煤显微组分特征及组成 |
5.2.4 砂岩显微组分特征 |
5.3 沉积旋回背景下的显微组分组成变化特征 |
第6章 湖-沼相沉积的有机地球化学特征 |
6.1 可溶有机质族组成 |
6.2 饱和烃生物标志物分布特征 |
6.2.1 正构烷烃、无环类异戊二烯烃 |
6.2.2 甾萜类化合物 |
6.3 芳香烃分子标志物分布特征 |
6.3.1 树脂生源化合物指标 |
6.3.2 芳构化藿烷和芳构化甾烷 |
第7章 镜质体反射率的影响因素及频率分布 |
7.1 镜质体反射率的影响因素 |
7.1.1 地质因素的影响 |
7.1.2 镜质体反射率测试的影响 |
7.2 随机反射率统计特征及其指示意义 |
7.2.1 反射率测试模式下的类镜质组分 |
7.2.2 不同岩性样品的随机反射率频率分布特征 |
7.2.3 不同沉积微相的镜质体反射率及其频率分布特征 |
7.3 侏罗系湖-沼相镜质体反射率异常的影响因素 |
第8章 湖-沼相富有机质沉积的成因及其倾油倾气性 |
8.1 湖泊-沼泽环境演变的地球化学记录 |
8.1.1 古气候特征 |
8.1.2 生物群落与有机质供给 |
8.1.3 沉积位置与水体环境 |
8.1.4 异常样品的成因浅析 |
8.2 湖-沼相沉积的有机质富集的影响因素及富集机制 |
8.2.1 沉积旋回背景下有机质富集的影响因素及主控因素分析 |
8.2.2 有机质富集的地质模式 |
8.3 大煤沟组湖-沼相沉积的倾油倾气性 |
8.3.1 西北地区煤系烃源岩的评价标准 |
8.3.2 大煤沟组湖-沼相沉积的有机质丰度、类型、成熟度 |
8.3.3 大煤沟组湖-沼相沉积的倾油、倾气性 |
第9章 结论 |
参考文献 |
附录A 图版及说明 |
附录B 附表 |
致谢 |
个人简历、在学期间发表的学术论文及研究成果 |
学位论文数据集 |
(10)库车坳陷煤系烃源岩生烃动力学和地球化学特征研究(论文提纲范文)
摘要 |
abstract |
第1章 引言 |
1.1 选题背景与意义 |
1.2 研究内容 |
1.2.1 煤岩生烃动力学研究 |
1.2.2 烃源岩有机地球化学特征研究 |
1.3 技术路线与工作量 |
1.4 实验方法及流程 |
1.4.1 岩石热解(Rock–Eval)、CHN元素分析、TOC分析和镜质体反射率的测量 |
1.4.2 高压釜—黄金管生烃动力学热模拟实验 |
1.4.3 气体组分分析 |
1.4.4 液态烃定量分析 |
1.4.5 固体残渣的岩石热解(Rock–Eval)分析和元素分析 |
1.4.6 抽提与族组成分离 |
1.4.7 饱和烃色谱与尿素络合 |
1.4.8 饱和烃色谱–质谱分析和单体烃碳同位素 |
1.4.9 开放系统热解–气相色谱分析 |
1.5 EASY%Ro模型和动力学参数 |
第2章 区域地质背景 |
2.1 构造特征 |
2.2 地层与烃源岩 |
2.2.1 三叠系 |
2.2.2 侏罗系 |
2.2.3 白垩系 |
2.2.4 新生界 |
2.3 储层与盖层 |
2.4 勘探历史与现状 |
第3章 三叠–侏罗系烃源岩地球化学特征 |
3.1 国内外研究现状 |
3.1.1 库车中生代烃源岩分布 |
3.1.2 烃源岩评价 |
3.2 样品选取和实验 |
3.2.1 样品选取 |
3.2.2 实验过程 |
3.3 有机质丰度 |
3.4 有机质类型 |
3.4.1 岩石热解参数 |
3.4.2 可溶有机质特征 |
3.5 有机质成熟度 |
3.5.1 镜质体反射率与Tmax |
3.5.2 生物标志化合物演化特征 |
3.6 生物标志物特征 |
3.6.1 饱和烃特征 |
3.6.2 饱和烃GC–MS |
3.6.3 不同层位烃源岩甾、萜烷和正构烷烃单体碳同位素组成特征的差异 |
3.7 煤矿煤样和地表剖面烃源岩抽提物分子与碳同位素地球化学特征的差异 |
3.7.1 克孜勒努尔组煤矿煤样和地表剖面泥质烃源岩样 |
3.7.2 塔里奇克组煤矿煤样和地表剖面泥质烃源岩样 |
3.8 本章小结 |
第4章 煤系烃源岩生烃潜力和生烃动力学研究 |
4.1 国内外研究现状 |
4.1.1 煤成烃地球化学特征 |
4.1.2 生烃动力学 |
4.2 样品选取及实验 |
4.2.1 样品选取 |
4.2.2 实验过程 |
4.3 封闭体系热解组分产率 |
4.3.1 气态烃产率和CO2产率 |
4.3.2 液态烃产率 |
4.4 质量平衡 |
4.5 高–过成熟阶段的生气 |
4.6 生烃动力学模拟 |
4.6.1 生油动力学参数 |
4.6.2 生气动力学参数 |
4.7 地史时期库车坳陷侏罗系和三叠系煤系烃源岩生烃史 |
4.8 高过成熟度阶段气态烃的生成机制 |
4.9 本章小结 |
第5章 结论与创新 |
5.1 论文主要结论 |
5.2 论文主要创新 |
参考文献 |
致谢 |
作者简历及攻读学位期间发表的学术论文与研究成果 |
四、源岩活化能分布最小值与有机质成熟度的关系(论文参考文献)
- [1]鄂尔多斯盆地长7段页岩生烃动力学特征与原位转化温度条件[J]. 张紫芸,侯连华,罗霞,何坤,张岩. 天然气地球科学, 2021(12)
- [2]延安探区山西组细粒沉积物生烃及页岩气富集特征[D]. 关瑞. 西安石油大学, 2021(09)
- [3]东营凹陷页岩可动油评价及留烃机理[D]. 孙佳楠. 中国科学院大学(中国科学院广州地球化学研究所), 2021(01)
- [4]鄂尔多斯盆地延长组优质烃源岩对油气成藏的贡献 ——以下寺湾探区为例[D]. 杨雯婷. 西安石油大学, 2020(11)
- [5]琼东南盆地深水区烃源岩地球化学特征、生烃演化及气源追踪[D]. 何春民. 中国科学院大学(中国科学院广州地球化学研究所), 2020(07)
- [6]柴达木盆地东部石炭系烃源岩及原油分子地球化学表征[D]. 何川. 中国地质大学(北京), 2020(08)
- [7]南堡凹陷拾场次洼沙三4亚段页岩孔隙发育及演化特征[D]. 李文奇. 中国石油大学(北京), 2020(02)
- [8]冀中坳陷东北部石炭-二叠系煤成气资源潜力分析及有利区预测[D]. 王永臻. 中国地质大学(北京), 2020(08)
- [9]柴达木盆地中侏罗世湖-沼相沉积有机地球化学研究-鱼卡凹陷大煤沟组为例[D]. 秦婧. 中国石油大学(北京), 2020
- [10]库车坳陷煤系烃源岩生烃动力学和地球化学特征研究[D]. 黄文魁. 中国科学院大学(中国科学院广州地球化学研究所), 2019(07)