高等数学课程改革的思考

高等数学课程改革的思考

一、关于高等数学课程改革的思考(论文文献综述)

陆奕纯[1](2021)在《初等数学教学借鉴高等数学教学法的初探》文中提出高校教师在实际教学中发现初等数学与高等数学衔接方面存在问题,尤其是大一新生,一入学就面临着微积分等核心基础课程的学习,但是仍然只习惯于高中的教学模式,不适应高等数学的教学模式,为此,大学教师额外进行各种改革以迁就学生适应和过渡.另一方面,随着新课改的实施,在教学内容上已有高等数学下放的趋势,这就为高中教学过程中部分地采用大学的教学模式提供了机会.本文将从教学方法角度出发,初步探索一个新的研究方向:初等数学教学借鉴高等数学教学法.通过对当前大学和高中教学方法使用情况的访谈调查,根据所得数据分析两种教学方法在使用上的差异:一个是偏重习题训练,另一个是围绕基本概念进行教学.然后,本文结合访谈内容从理解性教学的角度,借鉴高等数学教学法对高中教学提出7种策略,建议以“思”代“练”来减少习题,通过探索创新来理解知识点.以高中教学内容“数列与数学归纳法”为例,仅采用“斐波那契数列”为例题,重组整章内容进行教学,强调基本概念和知识点的理解与拓展,从而实现两者在教学模式上的衔接.

李超[2](2021)在《“高观点”下高中导数解题及教学研究》文中指出随着普通高中数学课程改革不断深入,《普通高中数学课程标准(2017年版2020年修订)》指出数学教师要理解与高中数学关系密切的高等数学内容,能够从更高的观点理解高中数学知识的本质,这对从事数学教育工作者的本体性知识(学科知识)提出了更高的要求.导数是连接高等数学和初等数学的重要桥梁,且部分导数试题的命制具有一定高等数学的背景.因此,这项研究选取高中导数内容,在“高观点”的指导下重点研究以下三个问题:(1)揭示部分高考导数试题具有的高等数学背景;(2)如何将高等数学的思想、观点和方法渗透到中学数学中去;(3)通过具体案例展示如何在“高观点”的指导下进行高中导数内容的解题和教学.这项研究通过对高中教师和学生的问卷调查,在“高观点”指导下研究高中导数内容的解题和教学,得出了以下两方面的结论:在解题方面,整理分析了近十年(以全国卷为主)具有高等数学背景的高考导数试题,导数试题的命题背景主要有四个方面:以高等数学中的基本定义和性质为命题背景、以高等数学中的重要定理和公式为命题背景、以着名不等式为命题背景、以高等数学中的重要思想方法为命题背景;总结了用“高观点”解决高考导数试题时常犯的四类错误:知识性错误、逻辑性错误、策略性错误、心理性错误;提出五项解题方法:创设引理破难题、洛氏法则先探路、导数定义避超纲、构造函数显神通、多元偏导先找点.在教学方面,通过对高中学生和高中教师进行问卷调查分析,从前人研究的基础上,提出“高观点”下高中导数教学的三个特点:衔接性、选择性、引导性;认为“高观点”下高中导数的教学应遵循四项基本的教学原则:严谨性原则、直观性原则、因材施教原则、量力性原则;提出相应的五项教学策略:开发例题,拓展升华策略、引入四规则,知识呈现多样化策略、先实践操作,后说理策略、融合信息技术,直观解释策略、引导方向,自主学习策略.

王改珍[3](2021)在《职前数学教师专业知识结构及水平的实证研究》文中研究指明随着教师专业发展成为教师教育领域的研究热点,各国从对教师“量”的需求逐渐转变到对教师“质”的需求,其中一个核心的研究内容便是教师知识。教师知识是教师专业素质的重要组成部分,也是影响教师教学水平的重要因素。教师教育的质量决定着教育的质量,职前教师教育的质量又是确保教师教育质量的基础环节。职前教师需要具备怎样的专业知识结构和水平,才能满足高质量教育的人才需求,受到教育研究者和教育工作者的广泛关注。教师专业知识是教师专业发展的基础,对职前教师专业知识的研究可以反映教师专业知识的最初状态。本研究聚焦于职前数学教师的专业知识结构及水平,分为三个子问题:一、职前数学教师需要怎样的专业知识结构?通过访谈和调查,从一线教师的视角给出对合格数学教师需要具备的专业知识结构的看法,并将其作为职前数学教师专业知识结构的参考标准。该知识结构是教师主观层面的认识,也可称为教师期望的专业知识结构。二、职前数学教师专业知识的掌握水平如何?通过测试了解职前数学教师专业知识的现状,进而得出实际的专业知识结构,并利用水平划分描述职前数学教师专业知识的掌握程度。三、职前数学教师实际的专业知识结构与一线教师期望的专业知识结构是否一致?通过对比,探讨职前数学教师专业知识结构的合理性,进而明确职前数学教师未来的努力方向。本研究采用量化研究与质化研究相结合的方法,以量化研究为主,质化研究为辅。子问题一通过调查教师视角下各类专业知识的重要程度来了解合格数学教师需要的各类专业知识的权重情况。首先通过文献梳理和访谈构建出数学教师的专业知识框架,并以此编制调查问卷;然后对一线教师展开问卷调查,教师根据教学经验对各类专业知识进行赋权;最后根据调查数据的统计分析得出合格数学教师需要具备的专业知识结构,并通过访谈对量化结果进行补充和说明。子问题二通过测试了解职前数学教师专业知识的现状和掌握水平。首先通过整理历年教师资格考试《数学学科知识与教学能力》(高级中学)科目的真题,明确各类知识的考查比例、题型和分值;然后结合子问题一的调查结果,确定测试所考查的内容、题型及分值,对试题进行抽取、组合、制定评分标准;接着,选取1所部属师范大学、1所省属师范大学和2所省属师范学院的数学师范生作为调查对象,展开测试;最后根据测试数据的统计分析得出职前数学教师的实际专业知识结构及水平。子问题三是基于前两个子问题的数据分析结果,再结合教师访谈,探讨职前数学教师实际的专业知识结构、不同知识掌握水平下的职前数学教师专业知识结构与教师期望的专业知识结构的一致性和合理性。研究结论如下:(1)合格数学教师的专业知识结构中数学学科知识的权重最大。教师视角下的合格数学教师需要具备的三类专业知识按照权重大小依次是数学学科知识(45.20%)、数学教学知识(30.71%)、数学课程知识(24.09%)。该知识结构可划分为三种类型。不同群体教师对各类知识权重的看法基本一致。(2)职前数学教师对所考查的数学专业知识基本能够掌握。实际知识结构中数学学科知识的权重最大。参与本研究的职前数学教师专业知识的掌握程度由低到高可划分为四个水平:前水平、识记水平、关联水平和综合水平。不同类型学校的职前数学教师专业知识测试得分具有显着差异,得分由高到低分别为部属师范大学、省属师范大学、省属师范学院。(3)职前数学教师的实际知识结构中,各类知识的权重大小顺序与教师期望的专业知识结构一致,即职前数学教师的实际知识结构是合理的。知识掌握程度处在四个水平的职前数学教师的专业知识结构也是合理的。教师期望的学科知识权重低于职前数学教师的实际权重,教师期望的教学知识权重却高于职前数学教师的实际权重,导致这一现象的原因在于职前数学教师教学经验的缺乏。根据上述研究结论,对职前数学教师教育提出相关建议:(1)职前数学教师应以理论知识学习为主;(2)职前数学教师应提高教学知识储备。

沈中宇[4](2021)在《面向教师教育的数学知识研究 ——以S市高中数学教研员为例》文中提出百年大计,教育为本。教育大计,教师为本。教师培养的关键是教师教育,要改善教师教育的效果,教师教育者的作用无疑是至关重要的,因此,数学教师教育者在数学教师教育中发挥着重要的作用。近年来,数学教育研究者开始关注数学教师教育者的研究,其中,“面向教师教育的数学知识”(Mathematical Knowledge for Teaching Teachers,简称MKTT)理论为研究一般数学教师教育者所需要的数学知识提供了借鉴。但已有的研究中对于“面向教师教育的数学知识”仍然缺乏清晰准确的刻画,同时,相关研究主要集中在理论构建,相关的实证研究较少。基于以上原因,本文以面向教师教育的数学知识为研究主题,选取高中数学教研员作为研究对象,主要探讨以下三个研究问题:(1)构成面向教师教育的数学知识的要素有哪些?(2)高中数学教研员具备哪些面向教师教育的数学知识?(3)在数学教研活动中,高中数学教研员反映出哪些面向教师教育的数学知识?针对本研究的三个研究问题,将研究设计分为三个阶段,分别为文献分析与框架确立、问卷调查与深度访谈以及现场观察与案例分析。文献分析与框架确立阶段采用了专家论证法。首先通过文献分析梳理已有的数学教师教育者专业知识框架,接着通过对相关的成分和子类别的反复比较,构建初始的面向教师教育的数学知识框架,最后通过三轮专家论证得到最终的面向教师教育的数学知识框架。问卷调查与深度访谈阶段采用了问卷调查法和深度访谈法。其中选取了高中数学中重要的数学主题编制了调查问卷和访谈提纲,通过编码分析高中数学教研员的问卷回答和访谈实录,从而了解高中数学教研员具备的面向教师教育的数学知识。现场观察与案例分析采用了案例研究法。其中观察了不同的高中数学教研员的多次教研活动,在观察过程中对教研活动进行录音并在观测后对高中数学教研员进行访谈,对录音和访谈材料进行编码和统计,从而剖析高中数学教研员在教研活动中反映的面向教师教育的数学知识。本研究的基本结论是:1.构成面向教师教育的数学知识的要素包括4个成分与12个子类别。构成成分为学科内容知识、教学内容知识、高观点下的数学知识和数学哲学知识。学科内容知识包含的子类别为一般内容知识、专门内容知识和关联内容知识,教学内容知识包含的子类别为内容与学生知识、内容与教学知识和内容与课程知识,高观点下的数学知识包含的子类别为学科高等知识、学科结构知识和学科应用知识,数学哲学知识包含的子类别为本体论知识、认识论知识和方法论知识。2.高中数学教研员具备的面向教师教育的数学知识情况如下。(1)高中数学教研员在学科内容知识、教学内容知识、高观点下的数学知识和数学哲学知识4个成分中并不存在明显的短板;(2)高中数学教研员对不同知识成分的掌握存在一定差异,其中,在学科内容知识和教学内容知识2个方面掌握较好,而在高观点下的数学知识和数学哲学知识2个方面还有所欠缺;(3)高中数学教研员在各个知识成分中有以下具体理解:在学科内容知识方面,对于基本的概念、定理和公式的合理性以及不同概念、定理和公式之间的联系较为熟悉;在教学内容知识方面,对于学生有关特定数学内容学习的困难,不同数学内容的教授方式和相关数学内容在教科书中的编排理解较深;在高观点下的数学知识方面,能够对中学数学知识作出一定程度的推广、涉猎不同学科中数学知识的应用;在数学哲学知识方面,能够大致解释数学定义的基本作用和标准、数学研究的动力、数学证明的作用和价值以及数学的基本思想方法。(4)高中数学教研员在各个知识成分中有以下欠缺之处:在学科内容知识方面,对于定义的多元性、解释的多样性和联系的普遍性方面还有进步的空间;在教学内容知识方面,对于学生数学学习困难的细致理解、不同数学内容的深入教授和教学内容编排意图的全面考虑还有提升的余地;在高观点下的数学知识方面,从高观点理解中学数学知识、分析不同知识的联系和在不同学科中应用数学知识方面还有较多需要完善的地方;在数学哲学知识方面,还不能形成系统的理解。3.在数学教研活动中,高中数学教研员反映出的面向教师教育的数学知识情况如下。(1)高中数学教研员反映的面向教师教育的数学知识大部分属于教学内容知识和学科内容知识,小部分属于数学哲学知识和高观点下的数学知识。(2)高中数学教研员在数学教研活动中的主要知识来源为一般内容知识、内容与教学知识、学科高等知识和方法论知识。(3)高中数学教研员在数学教研活动中反映的面向教师教育的数学知识主要有:在学科内容知识方面有数学中的基本概念、定理、公式和性质及其由来、表征、证明及解释;不同数学概念、定理、公式之间的联系。在教学内容知识方面有学生对特定数学内容理解存在的困难;不同数学内容的引入、辨析、应用和小结的教学方法;特定数学内容在课程标准中的要求和在教科书中的编排。在高观点下的数学知识方面有中学数学课程中的数学概念在高等数学中的推广;高观点下不同数学概念之间的联系;数学知识在现代科学和实际生活中的应用。在数学哲学知识方面有对数学定义的认识;对数学认识过程的理解;推理论证在数学中的作用;数学研究的思想方法。本研究对于教师教育者专业标准的制订、数学教师教育者专业培训的设计和数学教师专业发展项目的规划有一定启示,后续可以在数学教师教育者的专业知识、数学教师教育者的专业发展和数学教师教育者的工作实践等方面进一步开展研究。

王杰[5](2021)在《高观点下初中方程教学的主要问题与解决策略》文中认为方程是代数思想的起源。面对一个未知的数,我们希望求解它,那么我们利用和未知量有关的限制条件,再结合等量关系组成等式,我们就得到了有关未知量方程或者方程组。有了方程就相当于正式承认变量或者未知数能够作为一个独立的对象。从方程在课程标准中的变化来看,学生不仅仅需要掌握方程的解法,同时还需要学生掌握方程与不等式和函数之间的联系,也就是用函数的观点去看方程。最后需要让学生体会方程思想在解决问题中的便利性,注重培养学生逆向思维。同时也要注重借用方程学习的这一过程,培养学生的核心素养。本文先说明了方程这一内容在课程标准中的变化,再结合方程发展的历史,重点介绍了几种方程的解法,例如公式法,配方法、因式分解法、换元法,同时也介绍了一些方程组的解法。例如克拉默法则、矩阵法等等。这一部分是高等数学中的方程知识,作为教师必须要掌握这部分内容才能将“高观点”更好的融入教学。教师借助在教学中融入“高观点”,提高学生的核心素养和关键能力,为学生后续的学习产生深远的影响。为了更加详细的掌握学习者在学习方程过程中所遇到的问题,采用测试卷和调查问卷结合的方式,分析出真实存在的问题,为教师的教学提供必要的帮助。测试卷将设置五种题型,考察学习者对方程知识的掌握程度。通过分析测试卷,所获得的结论是:(1)有部分学生对生活中或者其他学科中存在的等量关系不太熟悉。(2)学生对二次方程的根的判断和对含有参数的方程组成立条件的判断存在模糊不清的现象。(3)学生在解方程时,方程的解法过于单一,并且对于解方程的通性、通法掌握有点欠缺。(4)学生对方程概念的理解也存在疏忽。(5)学生在方程应用题部分,尤其是对函数与方程结合的应用题存在不少问题。调查问卷主要是为了分析出学生在学习方程时会遇到的问题,调查问卷所获得的结论是:(1)有部分学生在课堂方程学习过程中缺少思考,没有对方程进行一题多解的习惯。(2)学生在做方程内容的作业时,存在不认真完成,不检验方程解的情况。(3)学生在课后没有认真复习课上学习到的方程的解法以及相关概念。(4)部分学生对自己存在错误的方程习题不及时进行错题整理与归纳总结。将“高观点”融入课堂教学的实际执行者是教师,因此,本文采用调查问卷的方式,调查不同学校和年级的中学教师将“高观点”融入教学的实际情况。通过调查后所获得的结论为:(1)大部分的教师都认为“高观点”对中学数学是存在影响的,对于教材分析也会联系到“高观点”。(2)有部分教师会去阅读渗透“高观点”的数学参考书。(3)部分教师会利用已经下放到教材里的高等数学的知识去解决有关方程问题。(4)总的来看,新教师比老教师更乐于利用“高观点”。最后结合对学生和教师的调查结果提出一些将“高观点”融入教学的建议,包括等式概念的教学、方程解法的教学、方程应用的教学以及函数、方程、不等式关系的教学。同时为了更好的进行这些教学又对中学学校和一线中学教师提出一些必要的建议。

彭艳贵[6](2020)在《核心素养背景下的高中复数内容与学生理解的若干相关问题探究》文中研究指明数学核心素养是新一轮高中数学课程标准修订的核心内容,既与个体发展的培养目标紧密关联,又是高中数学课程发展的方向。按照核心素养理念,在高中数学课程中,应该以学生发展为根本,培育学生的科学精神和创新意识,培养学生的必备品格和关键能力。高中阶段的复数关联着代数、平面几何、三角函数等多个知识主题,表现出广泛的联系性,在核心素养理念下,高中复数的学习对于学生的知识理解和个体发展都是重要的。在历年的高中数学课程修订的过程中,复数虽然一直被认为是高中数学课程中的基本部分,但它的内容体系从建国以来就表现出一定的波动性,反映了人们对高中复数的价值取向和课程发展的思考过程。在近些年的高中数学课程发展中,随着复数部分的删减,复数成为“容易教的难点课”,教起来简单,但学生对于基本概念的理解却存在明显的问题。课程发展理论的基本观点认为,教育是一种改变人们行为模式的过程,对学习者本身的研究是教育目标的基本来源。课程内容是构成课程的基本要素,着眼于促进学生发展的教育目标,基于学生的复数理解水平和行为表现的研究,对高中复数课程内容进行分析和讨论,是对当前高中复数课程研究的深入发展。因此,本文开展如下四个方面的研究。第一,基于核心素养理念,从学生个体发展需求、数学的教育功能和高中数学课程的基本要求三个方面确立高中复数教育价值的判断依据,从理论上初步讨论高中复数的教育价值。高中复数学习对学生的核心素养发展、知识结构发展、数学观念变化、思维品质提升、渗透数学应用意识和完善人才培养过程六个方面表现出重要的价值。高中复数教育价值的理论分析为后续研究奠定了必要的理论基础。第二,本研究从课程文本方面对我国历年十一个版本普通高中数学教学大纲或课程标准中的复数部分从课时数量、课程内容和教学目标三个方面进行了纵向的比较,历年的复数课程虽然在这三个方面存在一定的变化和波动,但都对复数作为“数”的概念的发展进行明确,表现了对数系扩充的目标要求,对复数的表示、复数的运算也都提出了相对较高的教学要求。研究中还对国际上基础教育比较发达的中国、美国、新加坡、英国和澳大利亚五个国家的高中数学课程标准中复数部分进行横向比较,分析不同国家高中复数的课程目标,了解各个国家的高中复数的基本目标情况,为我国高中复数课程发展提供参考。第三,作为进一步的实践求证,研究中在理论上分析和构建了高中生复数理解水平的框架,明确高中复数理解的四个水平:感知水平、表征水平、联结水平和应用水平。以此为基础,在专家的指导下,结合当前的教学实践,编制了高中生复数理解水平测试卷,选择合适的研究样本进行调查测试,并对结果进行分析。测试结果表明,多数学生在高中生复数理解的感知水平和表征水平上表现较好,可以较自如地处理一些常规的复数问题,对于一些知识的记忆和方法的基本应用表现较好。但在高中复数的关联水平和应用水平上,学生的测试表现相对较弱。由于多方面因素的影响,不同类型学校的学生也表现出一定的差异。学生在复数问题解决的表现中,能够识记基本的结论,但在稍微复杂的问题中缺少必要的判断,在复数问题求解的思维表现上比较普通,在需要较高数学能力的问题上表现不足,对于复数几何意义这个重要内容的理解不够完善,对虚数单位i等复数基本概念和运算法则也缺少必要的理解,在处理联系其它知识主题内容的复数问题时也较普遍地存在困难。第四,本研究根据理论分析和实践研究的结果,整理了高中复数的基本内容,构建高中复数的基本框架,结合高中数学核心素养的理念,提出高中复数课程及其内容的发展的基本主张。在高中数学知识体系中,应该坚定复数课程的基本地位,为了充分体现高中复数的教育价值,应该关注高中复数知识体系的相对完整性,重视高中复数的核心概念,丰富复数几何意义和复数与方程等与复数发展密切相关的内容,同时也应该关注复数的广泛关联性和历史文化价值。本文的研究内容和结果具有以下几个方面的创新性体现:创新性之一,当前关于高中阶段复数内容的研究整体不多,且较集中于高中复数教学设计的研究。本文以已有研究为基础,从理论分析、课程文本比较、复数学习评价、复数课程内容分析等方面进行了较为系统的研究,对相关研究起到了必要的补充作用;创新性之二,教育的根本目的是改变学生的行为,因此,基于学生发展的需求考虑,尤其是基本的知识需求方面,研究中对学生的复数理解水平进行测试,对学生的典型表现进行分析,讨论影响学生高中复数理解水平的知识方面因素。在研究思路、研究方法和研究结果等方面均表现出较好地探索意义;创新性之三,本文经过较为系统的研究,采用特定的方法对高中复数相关的具体问题进行分析,相关结论为高中复数课程改革提供了较为直接的依据,而不仅仅是依赖于经验。

夏素霞,杨硕[7](2020)在《民办高校高等数学课程改革省思》文中认为高等数学作为一门学生难学、教师难教的重要公共基础课程,民办院校在设置课程教学目标和教学内容时必须意识到师资结构、生源素质与公立院校的差异性,在学习借鉴前人研究成果并转化为实际课程改革方案时,要更大程度地考虑差异性带来的改革成效问题、催发教师改革动力问题。提出以专业应用为中心的课程体系建设、结合专业应用的案例教学、"四经五纬"课堂教学评价、融合学科专业的交叉师资培训的改革措施。

王若宇[8](2020)在《大学生数字-空间三维心理表征的特点及其教育启示》文中研究表明本文从大学生数学学习的角度结合认知科学研究结果,使用实验研究法证明了我国大学生在表征数量时会与三维空间中的不同方向产生自动化的联结反应并得到教育启示,即大学生的数量表征与空间信息的规律是存在于日常教育活动的三维空间中的。本文首先通过梳理相关研究发现,数字、空间加工的激活脑区重叠,因此两者间可能存在某种共同的认知神经机制,而且数字-空间联合表征(SNARC效应)与数学能力的发展显着相关,并且其效应量随着数学能力的发展而变化,即该效应能够作为判断大学生数学学习认知特点的辅助标准,并为大学数学教学改革提供实证证据。而后使用大小判断范式对120名大学生进行研究。实验结果表明数字空间联合编码效应在三维空间中存在,并得出大学生的数字-空间联合表征特点:小数与左侧、下方和近端产生自动化关联,大数与右侧、上方和远端产生自动化关联。最后,本文基于认知神经科学研究结果探讨了影响大学生数学学习的主要因素以及对大学数学教育的启示。从基于大学生认知特点促进其数学学习能力提升方面:首先,此研究有利于师生了解空间信息与数字的密切关系。这为进一步利用空间信息提升数学能力提供了实验证据。其次,有利于调整学习策略适应大学数学学习。不同的SNARC效应水平可能反映了不同学生的认知特点,这能帮助学生需要根据自身认知情况选择合适的学习策略。第三,提示数学学习中需要积极使用新技术。从基于新技术构建突出空间信息与操作性的教学方法方面:首先,当前计算机辅助教学在一定程度上促进了数学内容的直观性与可操作性,这为空间信息应用于数学教育提供了技术支持。因此在改革与完善高等数学课程内容时,要充分利用移动终端、虚拟现实等教育技术,让高等数学内容更直观且便于操作其次,教师可以根据新技术优化教学内容的与教学理念,使新技术能够最大程度发挥作用。第三,SNARC效应提供了新的评价方式,促进了数学教学评价方式多样化。教师可以通过监控该效应的强度以辅助教师判断学生数学能力的变化,为评价学生数学能力提供辅助标准。对于一些数学基础比较薄弱的学生,可以有针对性的训练其表征数字时与空间进行联系的能力,促进数学能力的提高。对有不同数学能力要求的专业,也可以通过测量SNRAC效应辅助判断学生的数学能力。以便于教师更好的掌握学生情况,做到因材施教。

周云[9](2020)在《效度视角下的SAT考试开发研究》文中研究指明考试机构的责任不仅仅是开发考试,还要证明对考试结果解释和使用的有效性,也就是效度。效度是评价考试开发质量的核心指标。论文以美国SAT考试作为研究对象,以SAT历次改革与效度的关系为基础展开研究。以2014年新一轮改革后的SAT考试为研究重点,通过凯恩(Kane)的基于论证的效度验证理论,对SAT考试开发进行效度验证。在总结SAT考试开发特征的基础上,思考对我国高考评价体系的启示。效度理论的发展对教育心理测量标准和考试改革都有影响作用。通过对SAT历次改革分析发现,当SAT考试的效度验证模式没有及时跟上最新的效度理论时,SAT考试结果的解释和使用就会引起质疑。2014年新一轮SAT改革的主要原因是,越来越多地高中毕业生没有为大学学习和职业生涯做好准备。本研究介绍大学学习和职业生涯准备和美国州际共同核心标准的形成路径和内涵,明确了对SAT考查目标的认识。然后通过介绍SAT考试的测量目标、考试内容和考试形式,论述SAT考什么和怎么考两个问题。并通过基于论证的效度验证理论的解释论证框架,梳理要实现大学学习和职业生涯准备目标,SAT考试要收集的证据。最后根据效度论证框架和SAT考试开发的逻辑过程,验证新一轮改革的SAT考试开发能否真正收集到考试分数预期解释的证据,也就是SAT考试能否有效测量大学学习和职业生涯准备这一目标。研究结果表明,新一轮改革后的SAT考试开发总体上是有效的。SAT考试的基于证据的目标确立,基于标准的考试开发和基于基准的分数报告,使得SAT考试从目标到结果呈现都有理有据,证据层层传递,形成了一个完整的评价体系。但是由于SAT是一个商业化的考试,成本—效益的追求导致其考查形式单一,能测量的学术能力相对有限。相比于SAT考试,我国的高考评价体系设计多了一层价值引导,考查内容更丰富,考查方式也更加多样,这同时也增加了我国高考开发的难度。但是,考试效度在我国还未引起足够的重视,这必然会影响高考评价体系的顶层设计落实的有效性。因此我国高考评价体系应加大教育测量理论和技术的应用,提高教育考试实证研究水平,以此提高考试开发的效度。通过加强考试机构专业化建设,提高考试评价的理论和实践能力。

李海燕[10](2020)在《高等数学视角下的中学数学教学研究 ——以不等式内容为例》文中研究指明随着新课改,高等数学中的一些知识逐渐融入中学数学教材,并且在高考中也出现了以高等数学中某些知识为背景的试题,因此高等数学视角下的中学数学教学就显得尤为重要.通过对高等数学视角下的中学数学教学的研究背景和研究现状整理分析,发现近年来关于这方面的研究已引起国内外专家学者的高度重视,但从某一具体的数学内容进行系统的研究却很少.本文立足于一个具体内容--不等式,来探讨在中学数学教学中如何渗透高等数学的思想、方法.不等式作为分析、解析数学问题的基础与工具,高考中常与函数等其他知识综合考查.因此,以不等式为载体,以高等数学为背景编制的试题成为高考中的新亮点.考查了学生对知识的迁移能力和创新思维能力.因此,本文对高等数学视角下的中学数学不等式的证明教学进行了研究.本文在对前人相关研究整理、分析的基础上,介绍了不等式的发展史、不等式在新课标、考试大纲中的体现及初、高等数学中与不等式的证明问题相关的理论基础.对高考试题中以高等数学为背景的有关不等式证明问题进行分类分析,阐明了从高等数学视角研究中学数学教学的必要性.希望能够对中学数学教师和学生有所帮助.通过对一线教师利用高等数学指导中学数学教学的问卷调查,为本论文的撰写提供支撑.最后,设计了具体的教学案例并进行分析,以此来说明高等数学在中学数学教学中的作用,并对一线中学数学教师提出建议,希望对中学数学教学有所帮助.

二、关于高等数学课程改革的思考(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、关于高等数学课程改革的思考(论文提纲范文)

(1)初等数学教学借鉴高等数学教学法的初探(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 研究背景
    1.2 研究现状
        1.2.1 传统应试思想仍普遍存在
        1.2.2 初等数学与高等数学的衔接问题
        1.2.3 初等数学与高等数学的内容衔接
    1.3 文献综述
        1.3.1 中学教育与高等教育的衔接
        1.3.2 中学数学与高等数学教学的衔接与策略
    1.4 研究问题
    1.5 研究意义
第2章 初等数学与高等数学教学方法的调查与分析
    2.1 数据分析
    2.2 调查结果再分析
    2.3 高中数学与高等数学教学方法使用的比较
第3章 借鉴高等数学教学法的高中数学教学策略研究
    3.1 类化教学
    3.2 多角度理解本质
        3.2.1 语言表达角度
        3.2.2 表格角度
        3.2.3 几何(图像)角度
        3.2.4 代数角度
    3.3 多知识点串联
    3.4 趣味引申
    3.5 合理运用阅读材料和探究与实践
    3.6 培养分析的思维方式
    3.7 高中与高等数学教师加强沟通
第4章 借鉴高等数学教学法的高中数学教学
    4.1 斐波那契数列的起源
    4.2 斐波那契数列与递推关系
    4.3 斐波那契数列与极限
    4.4 斐波那契数列与通项公式
    4.5 斐波那契数列与前n项和
    4.6 斐波那契数列与算法
第5章 借鉴高等数学教学法的高中数学教学拓展
    5.1 递推数列与函数
    5.2 递推数列与方程
    5.3 换元法
    5.4 极限思想与几何
第6章 总结与展望
    6.1 总结
    6.2 优势与不足
    6.3 展望
参考文献
附录 A 高等数学的课时调查
附录 B 初等数学的课时调查
附录 C 访谈提纲
致谢

(2)“高观点”下高中导数解题及教学研究(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 研究的背景
        1.1.1 数学教师专业素养发展的需要
        1.1.2 优秀高中学生自身发展的需求
        1.1.3 导数在高中数学教学及高考中的地位
    1.2 核心名词界定
        1.2.1 高观点
        1.2.2 导数
        1.2.3 数学教学
        1.2.4 解题
    1.3 研究的内容和意义
        1.3.1 研究的内容
        1.3.2 研究的意义
    1.4 研究的思路
        1.4.2 研究计划
        1.4.3 研究的技术路线
    1.5 论文的结构
第2章 文献综述
    2.1 文献搜集
    2.2 高观点下中学数学的研究现状
        2.2.1 国外研究的现状
        2.2.2 国内的研究现状
    2.3 高观点下高中导数的研究现状
        2.3.1 国外研究的现状
        2.3.2 国内研究的现状
    2.4 文献述评
    2.5 小结
第3章 研究设计
    3.1 研究的目的
    3.2 研究的方法
        3.2.1 文献研究法
        3.2.2 问卷调查法
        3.2.3 案例研究法
    3.3 研究工具及研究对象选取
    3.4 研究伦理
    3.5 小结
第4章 调查研究及结果分析
    4.1 教师调查问卷的设计及结果分析
        4.1.1 调查问卷设计
        4.1.2 实施调查
        4.1.3 调查结果分析
        4.1.3.1 问卷的信度分析
        4.1.3.2 问卷的效度分析
        4.1.3.3 问卷的结果分析
    4.2 学生调查问卷的设计及结果分析
        4.2.1 调查问卷设计
        4.2.2 实施调查
        4.2.3 调查结果及分析
    4.3 调查结论
    4.4 小结
第5章 “高观点”下高中导数的解题研究
    5.1 “高观点”下高考导数试题的命题背景
        5.1.1 以高等数学中的基本定义和性质为命题背景
        5.1.1.1 高斯函数
        5.1.1.2 函数的凹凸性
        5.1.2 以高等数学中的重要定理或公式为命题背景
        5.1.2.1 洛必达法则
        5.1.2.2 拉格朗日中值定理
        5.1.2.3 拉格朗日乘数法
        5.1.2.4 柯西中值定理
        5.1.2.5 柯西函数方程
        5.1.2.6 泰勒公式与麦克劳林公式
        5.1.2.7 极值的第三充分条件
        5.1.2.8 两个重要极限
        5.1.2.9 欧拉常数
        5.1.3 以着名不等式为命题背景
        5.1.3.1 伯努利不等式
        5.1.3.2 詹森不等式
        5.1.3.3 对数平均不等式
        5.1.3.4 斯外尔不等式
        5.1.3.5 惠更斯不等式
        5.1.3.6 约当不等式
        5.1.4 以高等数学中的重要思想方法为命题背景
        5.1.4.1 极限思想
        5.1.4.2 积分思想
        5.1.4.3 (常微分)方程思想
    5.2 “高观点”下高考导数解题中常见的四类错误
        5.2.1 知识性错误
        5.2.1.1 柯西中值定理的误用
        5.2.1.2 拉格朗日中值定理的误用
        5.2.1.3 多元函数求最值,不注意边界情况
        5.2.1.4 不注意洛必达法则使用的前提
        5.2.2 逻辑性错误
        5.2.2.1 循环论证
        5.2.2.2 混淆充分条件和必要条件的逻辑关系
        5.2.3 策略性错误
        5.2.4 心理性错误
    5.3 “高观点”下高考导数解题的方法
        5.3.1 创设引理破难题
        5.3.2 洛氏法则先探路
        5.3.3 导数定义避超纲
        5.3.4 构造函数显神通
        5.3.5 多元偏导先找点
    5.4 “高观点”下高考导数解题研究的案例
        5.4.1 “高观点”视角研究解题方法
        5.4.2 “高观点”视角研究试题的命制
    5.5 小结
第6章 “高观点”下高中导数的教学研究
    6.1 “高观点”下高中导数教学的教学特点
        6.1.1 衔接性
        6.1.2 选择性
        6.1.3 引导性
    6.2 “高观点”下高中导数教学的教学原则
        6.2.1 严谨性原则
        6.2.2 直观性原则
        6.2.3 因材施教原则
        6.2.4 量力性原则
    6.3 “高观点”下高中导数教学的教学策略
        6.3.1 开发例题,拓展升华策略
        6.3.2 引入四规则,知识呈现多样化策略
        6.3.3 先实践操作,后说理策略
        6.3.4 融合信息技术,直观解释策略
        6.3.5 引导方向,自主学习策略
    6.4 “高观点”下高中导数的教学案例
        6.4.1 常微分方程视角下的教学案例
        6.4.2 微积分视角下的教学案例
        6.4.3 “泰勒公式”的教学案例
    6.5 小结
第7章 结论与反思
    7.1 研究的结论
    7.2 研究的不足及展望
    7.3 结束语
参考文献
附录 A 教师调查问卷
附录 B 学生调查问卷
攻读学位期间发表的论文和研究成果
致谢

(3)职前数学教师专业知识结构及水平的实证研究(论文提纲范文)

摘要
Abstract
第一章 绪论
    第一节 研究背景
    第二节 研究问题
    第三节 研究意义
    第四节 论文结构
第二章 文献综述
    第一节 教师知识
        一.知识的内涵及分类
        二.教师知识的分类
    第二节 数学教师知识
        一.数学教师学科知识
        二.数学教师学科教学知识
        三.数学教师知识相关文献的量化分析
    第三节 职前数学教师知识
        一.职前数学教师知识的现状及来源
        二.职前数学教师知识中某类具体知识
        三.职前数学教师综合性知识和技能
        四.中外职前数学教师知识的对比
    第四节 本章小结
第三章 研究设计与实施
    第一节 研究思路与方法
        一.研究思路
        二.研究方法
    第二节 相关概念界定
        一.教师知识
        二.数学教师专业知识
        三.职前教师
        四.知识结构
    第三节 理论基础与框架
        一.数学教师专业知识分类框架构建
        二.职前数学教师专业知识分析层次建构
    第四节 研究的具体过程
第四章 教师视角下的合格数学教师专业知识结构
    第一节 教师视角下合格数学教师专业知识结构描述分析
    第二节 教师视角下合格数学教师专业知识结构聚类分析
    第三节 不同群体教师对合格数学教师各类知识权重看法的量化分析
        一.不同教龄教师对合格数学教师各类知识权重看法的差异分析
        二.不同职称教师对合格数学教师各类知识权重看法的差异分析
        三.不同称号教师对合格数学教师各类知识权重看法的差异分析
        四.不同学历教师对合格数学教师各类知识权重看法的差异分析
    第四节 教师视角下合格数学教师各类知识权重看法的质化分析
    第五节 本章小结
第五章 职前数学教师专业知识现状分析
    第一节 职前数学教师专业知识掌握情况的水平划分
        一.职前数学教师专业知识测试成绩整体描述
        二.职前数学教师测试总成绩的水平分布
        三.职前数学教师主观题作答情况的水平分析
    第二节 职前数学教师专业知识的实际结构
    第三节 不同类型学校职前数学教师专业知识得分情况的差异分析
        一.不同类型学校职前数学教师总成绩的差异分析
        二.不同类型学校职前数学教师各类知识得分的差异分析
    第四节 不同性别职前数学教师得分情况的差异分析
        一.不同性别职前数学教师总成绩的差异分析
        二.不同性别职前数学教师各类知识得分的差异分析
    第五节 各类数学专业知识之间的关系分析
        一.各类数学专业知识得分之间的相关性分析
        二.数学学科知识对数学教学知识的影响分析
        三.数学学科知识对数学课程知识的影响分析
    第六节 本章小结
第六章 职前数学教师专业知识实际结构与期望结构的对比分析
    第一节 职前数学教师专业知识实际结构与期望结构的整体比较
    第二节 不同水平下职前数学教师专业知识实际结构与期望结构的比较
        一.前水平的职前数学教师专业知识结构的比较
        二.识记水平的职前数学教师专业知识结构的比较
        三.关联水平的职前数学教师专业知识结构的比较
        四.综合水平的职前数学教师专业知识结构的比较
    第三节 职前数学教师专业知识结构的讨论
    第四节 本章小结
第七章 结论与建议
    第一节 研究的结论
    第二节 研究的建议
    第三节 研究的局限性与展望
参考文献
附录
    附录1 中学数学教师知识结构状况调查与访谈提纲
    附录2 数学教师专业知识分类框架
    附录3 中学数学教师知识权重调查问卷
    附录4 教师资格考试2014-2018 试题汇总
    附录5 职前数学教师专业知识与基本能力测试
    附录6 职前数学教师专业知识与基本能力测试参考答案
    附录7 职前数学教师专业知识结构及其培养策略访谈提纲
后记
在学期间公开发表论文及着作情况

(4)面向教师教育的数学知识研究 ——以S市高中数学教研员为例(论文提纲范文)

摘要
ABSTRACT
第1章 绪论
    1.1 研究背景
        1.1.1 教师教育者的专业发展需要关注
        1.1.2 数学教师教育者的研究值得重视
        1.1.3 数学教师教育者的专业知识有待探索
    1.2 研究问题
    1.3 研究意义
        1.3.1 理论意义
        1.3.2 实践意义
    1.4 论文结构
第2章 文献述评
    2.1 数学教师教育者的专业知识
        2.1.1 数学教师教育者的专业知识框架
        2.1.2 数学教师教育者的专业知识测评
        2.1.3 文献小结
    2.2 数学教师教育者的专业发展
        2.2.1 数学教师教育者的专业发展框架
        2.2.2 数学教师教育者的专业发展调查
        2.2.3 文献小结
    2.3 数学教师教育者的工作实践
        2.3.1 数学教师教育课堂的学习任务框架
        2.3.2 数学教师教育课堂的学习任务实践
        2.3.3 文献小结
    2.4 文献述评总结
第3章 研究方法
    3.1 研究设计
        3.1.1 文献分析与框架确立
        3.1.2 问卷调查与深度访谈
        3.1.3 现场观察与案例分析
    3.2 研究对象
        3.2.1 专家论证对象
        3.2.2 问卷调查对象
        3.2.3 深度访谈对象
        3.2.4 案例研究对象
    3.3 研究工具
        3.3.1 论证手册
        3.3.2 调查问卷
        3.3.3 访谈提纲
        3.3.4 观察方案
    3.4 数据收集
        3.4.1 专家论证
        3.4.2 问卷调查
        3.4.3 深度访谈
        3.4.4 现场观察
    3.5 数据分析
        3.5.1 专家论证
        3.5.2 问卷与访谈
        3.5.3 现场观察
第4章 研究结果(一):面向教师教育的数学知识框架
    4.1 文献分析
        4.1.1 已有框架选取
        4.1.2 相关成分析取
        4.1.3 相关类别编码
    4.2 框架构建
        4.2.1 相关类别合并
        4.2.2 相应成分生成
        4.2.3 初步框架构建
    4.3 框架论证
        4.3.1 第一轮论证
        4.3.2 第二轮论证
        4.3.3 第三轮论证
第5章 研究结果(二):高中数学教研员具备的面向教师教育的数学知识
    5.1 学科内容知识
        5.1.1 一般内容知识
        5.1.2 专门内容知识
        5.1.3 关联内容知识
    5.2 教学内容知识
        5.2.1 内容与学生知识
        5.2.2 内容与教学知识
        5.2.3 内容与课程知识
    5.3 高观点下的数学知识
        5.3.1 学科高等知识
        5.3.2 学科结构知识
        5.3.3 学科应用知识
    5.4 数学哲学知识
        5.4.1 本体论知识
        5.4.2 认识论知识
        5.4.3 方法论知识
    5.5 总体分析
        5.5.1 学科内容知识
        5.5.2 教学内容知识
        5.5.3 高观点下的数学知识
        5.5.4 数学哲学知识
第6章 研究结果(三):数学教研活动中反映的面向教师教育的数学知识
    6.1 案例1
        6.1.1 第一轮观察:平均值不等式
        6.1.2 第二轮观察:对数的概念
        6.1.3 案例1 总体分析
    6.2 案例2
        6.2.1 第一轮观察:幂函数的概念
        6.2.2 第二轮观察:函数的基本性质
        6.2.3 案例2 总体分析
    6.3 案例3
        6.3.1 第一轮观察:幂函数的概念
        6.3.2 第二轮观察:出租车运价问题
        6.3.3 案例3 总体分析
    6.4 案例4
        6.4.1 第一轮观察:反函数的概念
        6.4.2 第二轮观察:反函数的图像
        6.4.3 案例4 总体分析
    6.5 跨案例分析
        6.5.1 学科内容知识
        6.5.2 教学内容知识
        6.5.3 高观点下的数学知识
        6.5.4 数学哲学知识
        6.5.5 案例总体分析
第7章 研究结论及启示
    7.1 研究结论
        7.1.1 面向教师教育的数学知识框架
        7.1.2 高中数学教研员具备的面向教师教育的数学知识
        7.1.3 高中数学教研活动中反映的面向教师教育的数学知识
    7.2 研究启示
        7.2.1 教师教育者的专业标准制订需要关注学科性
        7.2.2 数学教师教育者的专业培训需要提升针对性
        7.2.3 数学教师专业发展项目规划需要增加多元性
    7.3 研究局限
    7.4 研究展望
        7.4.1 拓展数学教师教育者的专业知识研究
        7.4.2 深入数学教师教育者的专业发展研究
        7.4.3 延伸数学教师教育者的工作实践研究
参考文献
附录
    附录1 论证手册(第一轮)
    附录2 论证手册(第二轮)
    附录3 论证手册(第三轮)
    附录4 调查问卷(第一版)
    附录5 调查问卷(第二版)
    附录6 调查问卷(第三版)
    附录7 调查问卷(第四版)
    附录8 调查问卷(第五版)
    附录9 访谈提纲
    附录10 观察方案
作者简历及在学期间所取得的科研成果
致谢

(5)高观点下初中方程教学的主要问题与解决策略(论文提纲范文)

摘要
Abstract
第一章 绪论
    1.1 研究背景
    1.2 研究问题
    1.3 研究意义
    1.4 研究方法
第二章 文献综述与理论基础
    2.1 相关概念界定
    2.2 国内外研究现状
        2.2.1 国外研究现状
        2.2.2 国内研究现状
        2.2.3 文献述评
    2.3 理论基础
        2.3.1 数学与数学教育相关理论
        2.3.2 教师专业发展相关理论
第三章 方程的发展及教学要求
    3.1 方程的发展历史
    3.2 初中课程标准中有关方程的内容
    3.3 方程的教学意义
第四章 高观点下对初中方程的概念及主要解法的解读
    4.1 方程概念与分类
        4.1.1 等式的定义
        4.1.2 关于方程的定义
        4.1.3 方程的分类
    4.2 方程同解定理
        4.2.1 同解方程的原理
        4.2.2 导出方程原理
    4.3 方程解法综述
        4.3.1 方程和方程组解法的一般原理
        4.3.2 公式法
        4.3.3 因式分解法
        4.3.4 换元法
        4.3.5 方程组的解法
    4.4 方程应用及其应用题
    4.5 方程与函数、不等式关系分析
        4.5.1 不等式的定义及性质
        4.5.2 三者之间的关系
第五章 高观点下对初中生方程学习现状的调查及分析
    5.1 调查方案的设计与实施
        5.1.1 调查目的
        5.1.2 调查内容
        5.1.3 调查对象
        5.1.4 调查实施过程
    5.2 调查的结果分析
        5.2.1 测试卷的情况分析
        5.2.2 测试卷的调查结论
        5.2.3 调查问卷的结果分析
        5.2.4 问卷调查的结论
    5.3 教师访谈
第六章 中学教师利用“高观点”指导教学的调查及分析
    6.1 调查目的及意义
    6.2 调查对象
    6.3 信度、效度分析
        6.3.1 信度分析
        6.3.2 效度分析
    6.4 调查结果及分析
第七章 高观下提高初中方程教学质量的策略与建议
    7.1 关于方程概念的教学
    7.2 关于方程解法的教学
    7.3 关于方程应用的教学
    7.4 关于方程与函数、不等式关系的教学
第八章 结论和建议
    8.1 结论
    8.2 建议
        8.2.1 对一线中学数学教师的建议
        8.2.2 对中学学校的建议
参考文献
附录1:测试卷
附录2:初中生方程学习现状调查问卷
附录3:教师采用高观点进行教学现状调查问卷
致谢

(6)核心素养背景下的高中复数内容与学生理解的若干相关问题探究(论文提纲范文)

摘要
Abstract
第一章 引言
    一、研究背景
    二、研究问题
    三、研究意义
    四、研究思路与框架
    五、研究方法
    六、核心概念界定
第二章 文献综述
    一、复数的历史发展过程概述
    二、高中复数课程内容组织的研究
    三、高中复数课程的比较研究
    四、高中复数教与学的研究
    五、数学理解的研究
    六、小结
第三章 核心素养与高中复数教育价值
    一、复数与学生数学核心素养发展
    二、高中复数教育价值判断的依据
    三、高中复数教育价值的阐释
第四章 高中复数课程文本的比较研究
    一、我国历年高中复数课程文本的纵向比较
    二、高中复数课程文本的国际横向比较
第五章 高中生复数理解水平研究
    一、测评的意义
    二、研究的理论基础
    三、研究方法设计
    四、测试的指标分析
    五、测试结果统计
    六、分析与结论
    七、高中生复数理解水平测试表现的讨论
第六章 核心素养背景下的高中复数课程内容分析
    一、源于课程与教学理论的思考
    二、基于研究实践的探索
    三、高中复数的基本内容及其层级关系
    四、核心素养背景下的高中复数课程内容发展建议
第七章 结论与展望
    一、研究结论
    二、研究展望
参考文献
附录
    附录一 高中生复数理解水平测试卷(预测试)
    附录二 高中生复数理解水平测试卷(正式测试)
    附录三 我国历年教学大纲或课程标准中的复数内容
    附录四 美国、新加坡、英国、澳大利亚高中数学课程标准复数内容
后记
在学期间公开发表论文及着作情况

(7)民办高校高等数学课程改革省思(论文提纲范文)

一、高等数学课程改革的文献分析
二、教师实施课程情况分析
三、民办高校高等数学改革情况分析
四、民办高校高等数学课程改革的省思
    (一)借鉴工程应用型人才理念建立课程体系
        1. 以四个能力培养为导向建立“以专业应用为中心”的数学课程体系
        2. 增加必修数学实验课
        3. 完善配套措施
    (二)结合专业应用案例制订教学内容
    (三)采用“四经五纬”课堂教学评价,促进教学目标达成
    (四)以融合学科专业的交叉培训培养师资队伍
五、结语

(8)大学生数字-空间三维心理表征的特点及其教育启示(论文提纲范文)

中文摘要
Abstract
绪论
    一、问题的提出
    二、研究目的及意义
    三、文献综述
    四、研究思路与方法
    五、数学-空间联合心理表征概念界定
    六、研究的创新点
第一章 大学生数学学习主要问题与原因分析
    第一节 大学生数学学习出现的问题
        一、数学内容难度增加
        二、在应试教育中形成的学习思维定式
        三、由认知因素导致的动机不足
    第二节 大学生数学教学中出现的问题
        一、重理论、轻应用
        二、数学教学方法与内容单一
        三、现有教学评价形式的局限性
    第三节 大学生数学学习问题成因分析
        一、对大学生数学学习认知特点认识不足
        二、课程教学改革缺乏实证研究支撑
        三、传统教育学研究方法存在局限性
    本章小结
第二章 大学生数字-空间三维心理表征认知特点的实验研究
    第一节 大学生水平方向的数字-空间联合心理表征特点研究
        一、大学生水平方向数字-空间联合心理表征研究设计与实施
        二、大学生水平方向数字-空间联合心理表征研究结果分析
    第二节 大学生垂直方向的数字-空间联合心理表征特点研究
        一、大学生垂直方向数字-空间联合心理表征研究设计与实施
        二、大学生垂直方向数字-空间联合心理表征研究结果分析
    第三节 大学生远近方向的数字-空间联合心理表征特点研究
        一、大学生远近方向数字-空间联合心理表征研究设计与实施
        二、大学生远近方向数字-空间联合心理表征研究结果分析
    本章小结
第三章 大学生数字-空间三维心理表征特点对数学教育的启示
    第一节 基于大学生认知特点促进其数学学习能力提升
        一、了解空间信息与数字的密切关系
        二、调整学习策略适应大学数学学习
        三、积极使用新技术促进数学学习
    第二节 基于新技术构建突出空间信息与操作性的教学方法
        一、计算机辅助教学促进数学内容的直观性与可操作性
        二、根据新技术优化教学内容的与教学理念
        三、促进数学教学评价方式多样化
结语
参考文献
致谢
攻读学位期间发表论文

(9)效度视角下的SAT考试开发研究(论文提纲范文)

摘要
ABSTRACT
第1章 绪论
    1.1 选题缘由
        1.1.1 研究背景
        1.1.2 研究意义
        1.1.2.1 拓展高考研究者的国际视野
        1.1.2.2 了解SAT考试开发的流程和质量
        1.1.2.3 关照本土实践,为我国高考评价提供借鉴
    1.2 基本概念的界定
        1.2.1 何为SAT
        1.2.2 考试开发
        1.2.2.1 考试开发的定义和流程
        1.2.2.2 考试开发的测量学指标
    1.3 文献综述
        1.3.1 文献检索说明
        1.3.2 国内高考效度研究现状
        1.3.3 国内对SAT考试的研究现状
        1.3.4 国外对SAT考试发展及效度验证研究的现状
        1.3.4.1 SAT考试发展研究
        1.3.4.2 不同模式下的SAT效度研究
        1.3.5 文献述评
    1.4 研究设计
        1.4.1 研究问题
        1.4.2 研究方法
        1.4.3 研究路线
    1.5 研究价值
        1.5.1 学术价值
        1.5.2 应用价值
第2章 效度理论的发展及对SAT改革的影响
    2.1 效度及效度验证
        2.1.1 效度验证对象
        2.1.2 效度验证模式
    2.2 效度概念的演化
        2.2.1 效标效度发展时期
        2.2.2 分类效度发展时期
        2.2.2.1 内容效度
        2.2.2.2 构念效度
        2.2.3 整体效度发展时期
        2.2.4 基于论证的效度验证时期
    2.3 教育与心理测量标准中的效度思想
        2.3.1 教育与心理测量标准的产生与发展
        2.3.2 教育与心理测量标准中效度概念的发展
    2.4 效度理论的发展对SAT改革的影响
        2.4.1 美国大学入学考试和考试机构的诞生
        2.4.2 SAT考试诞生:天资可以测量
        2.4.2.1 SAT考试的诞生
        2.4.2.2 哈佛大学奖学金项目的证据
        2.4.2.3 有效的大学预测补充工具
        2.4.3 SAT第一次改革:增加学业测试作为补充
        2.4.3.1 SAT考试的发展和完善
        2.4.3.2 触发事件:哈佛评论的质疑
        2.4.3.3 改革举措:考试一分为二
        2.4.4 SAT第二次改革:增强内容一致性
        2.4.4.1 分类效度理论的出现
        2.4.4.2 触发事件:阿特金森的发难
        2.4.4.3 改革举措:考试、课程和教学相一致
        2.4.5 SAT第三次改革:重新设计满足升学和就业准备的考试
        2.4.5.1 与新的教育目标相匹配
        2.4.5.2 关键人物:科尔曼
        2.4.5.3 改革举措:证据收集
    2.5 基于论证的效度验证框架
        2.5.1 新一轮SAT的效度检验模式
        2.5.2 基于论证的效度验证框架
第3章 SAT考查目标:大学学习和职业生涯准备
    3.1 大学学习和职业生涯准备的定义
    3.2 大学学习和职业生涯准备形成的路径
        3.2.1 成功标准项目:大学学习准备标准
        3.2.2 文凭项目:高中毕业基准
        3.2.2.1 文凭项目发起的背景
        3.2.2.2 高中毕业基准的研制过程
        3.2.2.3 文凭项目发起的行动议程
        3.2.3 美国州际共同核心标准
        3.2.3.1 州际共同核心标准行动的背景
        3.2.3.2 州际共同核心标准的开发采用
        3.2.3.3 州际共同核心标准的特点和内容
        3.2.3.4 大学学习和职业生涯准备锚标准
    3.3 大学学习和职业生涯准备提升为国家教育目标
    3.4 大学学习和职业生涯准备的内涵
    3.5 构成大学学习和职业生涯准备的四个“关键”维度
第4章 SAT收集的证据:考试内容和形式
    4.1 SAT的测量目标
    4.2 SAT考试的内容和要求
        4.2.1 SAT考试内容结构
        4.2.2 SAT各部分考试的内容和要求
        4.2.2.1 SAT阅读考试
        4.2.2.2 SAT语法考试
        4.2.2.3 作文考试(可选)
        4.2.2.4 SAT数学考试
        4.2.3 SAT考试的总体框架
    4.3 SAT考试的分数报告
        4.3.1 SAT考试分数报告构成
        4.3.2 SAT考试分数合成方式
        4.3.3 SAT分数报告的呈现方式
        4.3.4 SAT考试分数的解释和预期用途
        4.3.4.1 评估学生的大学学习和职业生涯准备情况
        4.3.4.2 大学入学决定和大学课程安排
    4.4 SAT收集的证据
        4.4.1 SAT考试分数解释的逻辑过程
        4.4.2 SAT考试分数的解释论证框架
        4.4.3 SAT考试分数的解释论证
        4.4.3.1 设计推断证据
        4.4.3.2 评分推断证据
        4.4.3.3 概化推断证据
        4.4.3.4 外延推断证据
        4.4.3.5 内涵推断证据
        4.4.4 SAT效度论证框架:SAT要收集的证据
第5章 SAT证据收集的有效性:考试开发效度验证
    5.1 SAT考试开发过程
        5.1.1 SAT考试开发指导原则
        5.1.2 SAT考试开发流程
    5.2 设计推断的效度论证
        5.2.1 假设1:考试内容规范与考试测量目标一致
        5.2.1.1 SAT考试设计关键特征与考试测量目标的一致性分析
        5.2.1.2 考试内容规范与SAT考试测量目标的一致性分析
        5.2.2 假设2:考试内容领域与课程标准一致
        5.2.2.1 阅读考试内容领域与CCSS的一致性分析
        5.2.2.2 语法考试内容领域与CCSS的一致性分析
        5.2.2.3 数学考试内容领域与CCSS的一致性分析
        5.2.3 假设3:试题内容规范与考试内容规范一致
        5.2.3.1 SAT考试试题开发
        5.2.3.2 SAT考试内容评审
        5.2.4 假设4:试题质量符合教育测量学要求
    5.3 评分推断的效度论证
        5.3.1 假设5:评分规则是适当的
        5.3.1.1 SAT考试的题型和答题方式
        5.3.1.2 SAT考试的评分方式
        5.3.2 假设6:原始分转化为量表分数的模型与观察数据是拟合的
        5.3.2.1 量表的设计
        5.3.2.2 量表的研究
    5.4 概化推断的效度论证
        5.4.1 假设7:试题是样本的有效单元
        5.4.1.1 SAT考试试题编码
        5.4.1.2 试题考查的内容领域属于考试内容规范的范围
        5.4.1.3 试题考查的关键特征属于考试内容规范的范围
    5.5 外延推断的效度论证
        5.5.1 假设8:概化全域覆盖的内容领域与目标领域相一致
        5.5.1.1 概化全域的内容种类与目标领域一致
        5.5.1.2 概化全域的内容覆盖范围与目标领域一致
    5.6 内涵推断的效度论证
        5.6.1 假设9:考生分数结构能够反映考试要求考查的结构内涵
        5.6.1.1 考试考查的子维度分数结构与考试内容规范结构一致
        5.6.1.2 考试考查的跨学科主题结构与考试内容规范结构一致
第6章 结论及启示
    6.1 SAT考试开发效度验证结论
    6.2 SAT考试主要特征
        6.2.1 基于证据的考试目标的确立
        6.2.1.1 美国的证据文化
        6.2.1.2 SAT考试目标确立的证据基础
        6.2.2 基于标准的考试开发
        6.2.2.1 标准指导考试开发的程序
        6.2.2.2 标准指导考试开发的规范
        6.2.3 基于基准的分数报告方式
    6.3 SAT考试与我国高考评价体系的比较
        6.3.1 为什么考:“大学学习和职业生涯准备”和“一核”
        6.3.2 考什么:“七个子维度”和“四层”
        6.3.3 怎么考:“一级”和“四翼”
        6.3.4 考查载体:情境确定和不确定
        6.3.5 比较结论
    6.4 SAT考试改革和开发对我国高考评价体系的启示
        6.4.1 加大教育测量理论和技术的应用
        6.4.2 提高教育考试实证研究水平
        6.4.3 加强考试机构专业化建设
参考文献
附录
    附录 A SAT阅读考试内容规范表
    附录 B SAT阅读考试内容领域
    附录 C SAT语法考试内容规范表
    附录 D SAT语法考试的内容领域
    附录 E SAT数学考试内容规范表
    附录 F SAT数学内容领域
    附录 G 分测验分数转换量表
    附录 H 子维度分数转换量表
    附录 I 主题分数转换量表
    附录 J SAT样卷
致谢

(10)高等数学视角下的中学数学教学研究 ——以不等式内容为例(论文提纲范文)

中文摘要
Abstract
一、绪论
    1.1 研究背景
    1.2 研究内容与目的
    1.3 研究方法
    1.4 不等式的发展史
    1.5 相关概念的界定
二、文献综述
    2.1 国外研究现状
    2.2 国内研究现状
    2.3 文献述评
三、初、高等数学中有关不等式证明问题研究的教学内容
    3.1 不等式在课程标准中的体现
    3.2 普通高中人教版A、B版本教材对比分析
    3.3 初等数学中与不等式证明问题相关的教学内容
    3.4 高等数学中与不等式证明问题相关的教学内容
四、近年高考试题中有关不等式证明的“高观点”试题分析
    4.1 不等式在考试大纲中的体现
    4.2 高考中以高等数学为背景的题型分析--不等式的证明问题
    4.3 高考中运用高等数学方法解题的研究分析--不等式的证明问题
    4.4 “高观点”下的不等式证明高考试题特点及教学分析
五、中学数学教师利用高等数学知识指导教学的调查及分析
    5.1 调查目的及意义
    5.2 调查对象
    5.3 信度、效度分析
    5.4 调查结果及分析
六、高等数学视角下的教学设计分析及建议
    6.1 “高观点”下的不等式教学案例设计及分析
    6.2 对实施“高观点”中学教学的建议
总结与反思
参考文献
附录一
致谢
作者简介
伊犁师范大学硕士研究生学位论文导师评阅表

四、关于高等数学课程改革的思考(论文参考文献)

  • [1]初等数学教学借鉴高等数学教学法的初探[D]. 陆奕纯. 上海师范大学, 2021(07)
  • [2]“高观点”下高中导数解题及教学研究[D]. 李超. 云南师范大学, 2021(08)
  • [3]职前数学教师专业知识结构及水平的实证研究[D]. 王改珍. 东北师范大学, 2021(09)
  • [4]面向教师教育的数学知识研究 ——以S市高中数学教研员为例[D]. 沈中宇. 华东师范大学, 2021(08)
  • [5]高观点下初中方程教学的主要问题与解决策略[D]. 王杰. 合肥师范学院, 2021(09)
  • [6]核心素养背景下的高中复数内容与学生理解的若干相关问题探究[D]. 彭艳贵. 东北师范大学, 2020(04)
  • [7]民办高校高等数学课程改革省思[J]. 夏素霞,杨硕. 高等理科教育, 2020(05)
  • [8]大学生数字-空间三维心理表征的特点及其教育启示[D]. 王若宇. 黑龙江大学, 2020(05)
  • [9]效度视角下的SAT考试开发研究[D]. 周云. 上海师范大学, 2020(07)
  • [10]高等数学视角下的中学数学教学研究 ——以不等式内容为例[D]. 李海燕. 伊犁师范大学, 2020(12)

标签:;  ;  ;  ;  ;  

高等数学课程改革的思考
下载Doc文档

猜你喜欢