一、矩形目标的快速恢复算法及其DSP实现(论文文献综述)
覃禹让[1](2021)在《高速光WDM系统中的非线性效应及其补偿》文中研究表明随着互联网和新兴产业的喷涌而出,通信网络逐渐进入到了流量大爆炸的时代,大数据、云计算、在线教育、网络直播等各种各样的互联网应用对网络带宽的需求在快速增长。数据传输方面对传输速率、传输距离、传输带宽展现了更高的需求,在高速传输的条件下,不可避免地将受到更严重地非线性效应的影响,如何更高效地完成对传输损伤的补偿显得尤为重要。而波分复用系统(WDM)是应用最广泛的传输系统之一,其能够提高信道容量和带宽的特性,也恰恰满足了新一代光通信数据传输需求。本论文重点研究了相干光WDM系统中非线性效应的估计模型、用于非线性补偿的数字反向传输算法和能够提高信道容量和频谱效率的概率整形技术。提出了一种简化的非线性效应估计模型、改良的自适应数字反向传输算法和概率整形与反向传输算法的融合方案。论文的主要工作内容和创新点如下:(1)研究了相干光WDM系统的概念和理论模型,重点研究了相干光WDM系统中的非线性效应,提出了相干光WDM系统的简化噪声估计模型,该方案创新点为大大简化了非线性噪声的计算复杂度,仿真研究了常规光WDM系统与弹性光WDM两种系统中噪声的估计效果,研究结果表明该简化噪声模型在简化了复杂度的同时也很好地对系统中的噪声进行估计。(2)研究了用于非线性损伤补偿的数字反向传输算法,提出了基于二分的自适应数字反向传输搜索方案,该方案的创新点是在未知传输链路参数的情况下,能够通过二分搜索的方式计算出最佳的非线性参数,并大大减少补偿的计算复杂度。仿真对传统DBP算法与所提出的算法进行了对比分析,研究结果表明,所提出的算法可在未知传输链路参数的情况下对传输损伤进行补偿,相对于传统方式有良好的补偿效果,计算复杂度大大降低。(3)研究了概率整形的基本原理,提出了一种基于概率整形和数字反向传输算法的联合补偿方案,该方案创新点在于通过两者的融合补偿,能够在提高传输的信道容量的同时也具有良好的补偿效果。仿真研究了联合补偿方案的传输性能及其影响因子,研究结果表明,在选取合适的参数条件下,该补偿方案能够在接近传输的互信息极限的条件下,同时有着良好的传输性能。
焦泽中[2](2021)在《基于DSP的特殊交通标志提示系统的设计与实现》文中进行了进一步梳理随着人工智能的迅猛发展,交通标志提示系统在辅助驾驶、自动驾驶、交通标志维护领域具有重要研究意义。本文在分析、总结国内外最新研究进展的基础上,围绕特殊交通标志提示系统的设计与实现,重点研究了交通标志的检测与识别,以及针对光照条件不佳、倾斜、破损、被遮挡等特殊交通标志的解决方案研究,论文主要研究工作和成果如下:(1)交通标志检测。在分析交通标志先验信息的基础上结合颜色与形状特征,提出联合颜色空间分割法结合基于形状特征的交通标志检测方法,可以有效提高交通标志检测的准确率和召回率。(2)特殊交通标志处理。在实际应用中往往存在光照条件不佳、交通标志倾斜、被遮挡等情况,本文针对以上各类场景提出相应解决方案,有效提高了系统的准确性与鲁棒性。(3)交通标志识别。HOG特征与LBP特征融合得到HOG-max LBP特征,利用SVM分类器实现交通标志的分类识别。经实验验证本文算法具有较好的识别准确率、实时性和泛化能力。(4)交通标志提示系统的实现。论文选用TMS320DM642作为系统的硬件开发平台,充分利用DSP内部资源对算法进行移植与优化,提高程序运行效率,使其可作为车载设备实时检测识别道路交通标志,并且通过语音对驾驶员进行提示。综上所述,论文主要针对交通标志提示系统涉及的相关问题进行研究与探索,旨在提高系统实时性与准确性,并通过实验验证论文所采用方法具有可靠性。
郭磊轩[3](2021)在《T型三电平电能质量综合治理装置研制》文中认为加快5G网络、大数据中心、新能源充电桩等新型基础设施建设是我国的重要战略目标,除此之外,光伏、风电等新能源发电在电网中渗透率逐步提高,且电力电子装置在电力系统中的所占比例越来越大,因此用电设备对电能质量的敏感程度提高,电能质量问题的危害日益严峻。电能质量综合治理装置可以用于补偿非线性负载及不平衡负载等导致的谐波电流、无功电流及不平衡电流,而T型三电平拓扑具有耐压性能高、开关管损耗低、输出纹波小等优点,因此,T型三电平电能质量综合治理装置具有实际应用价值。本文以T型三电平电能质量综合治理装置为研究对象,主要研究内容为:(1)阐述了电能质量问题的治理现状,归纳总结国内外电能质量治理的相关标准,并在此基础上对电能质量治理装置进行了产品调研,以便于确定本课题的研究重点与难点。(2)归纳总结了电能质量综合治理装置的输出滤波器的功能需求,从数学模型、传递函数和Bode图的角度详细对比L型、LCL型、LLCL型、LCL-LC型滤波器的特性,推导出LCL-LC型滤波器具有高频衰减快速和开关频率处陷波的特性;建立LCL-LC型滤波器的数学模型,针对其存在的谐振峰的特性,介绍了各种无源阻尼类型;详细分析了用于电能质量治理装置的LCL-LC型滤波器的特殊需求,并针对此需求提出了双直角坐标系下基于图形分析法的滤波器参数设计,分析了总电感量、电感比值、总电容量、电容比值等各个参数对滤波器外特定的影响,并根据样机性能需求进行了LCL-LC型滤波器的参数设计。(3)介绍了三电平的SVPWM调制具体过程,在此基础上从理论上分析T型三电平拓扑的中点电位不平衡的抑制措施;阐述了T型三电平拓扑的换流过程,分析了各个状态下电容电压与逆变器侧输出值,并在此基础上分析了T型三电平拓扑的优势以及固有的中点电位平衡问题的产生机理;选用基于时间因子分配法的中点电位平衡控制策略,并在Matlab/Simulink中进行了仿真验证。(4)建立T型三电平电能质量综合治理装置的数学模型,在此基础上,对谐波电流、无功电流和不平衡负载条件下电流补偿的三种控制目标进行针对性分析;采用基于αβ静止坐标系下谐波电流的抑制策略,采用VPI控制器对不平衡负载条件下电流补偿;针对补偿装置实时性要求高的原则,对控制器的参数设计、z域内离散化以及控制系统的延时性进行了研究并在Matlab/Simulink中进行了仿真验证。(5)阐述了硬件电路整体架构设计思路,包括控制电路设计、功率板电路与滤波板电路中PCB层叠设计与电路图设计。从工业装置角度介绍了LCL-LC型滤波器中电感设计、基于IPOSIM软件的开关器件选型、散热器设计以及整体装置硬件架构设计。最后,在Matlab/Simlulink仿真平台和本文搭建的实验平台上对谐波补偿、无功补偿及不平衡补偿等试验进行了仿真和实验,对装置的功能和控制策略的有效性进行了验证。
管学伟[4](2021)在《机载IRST小目标检测技术研究》文中提出机载红外搜索跟踪系统(Infrared Search and Track System,IRST)能够快速发现并锁定敌方目标,有效增强了载机对战场态势的感知能力;具备较高的测角测距精度,能为武器打击系统提供精确的信息支撑;被动式探测原理,抗电子战干扰强,隐蔽性能好,能够提升载机的战场生存能力。因此,IRST系统是现代战机综合式航电系统的重要组成部分。“先敌打击”的前提是“先敌发现”,为了尽可能早地发现目标,探测距离是机载IRST的关键指标。在远距离成像条件下,目标在红外图像中的尺寸小,信号强度弱,表现为弱小特征,给检测带来了挑战;由于成像场景的复杂性,目标容易受到噪声及杂波的干扰,进而会降低机载IRST的作战效能;此外,战场环境是多变的,这对检测的适应性也提出了更高的要求。本文以新一代机载红外搜索跟踪系统工程研制为应用背景,围绕机载IRST小目标检测技术开展了研究,致力于提升机载IRST目标检测系统在复杂背景下对远距离目标的探测能力,增强其场景鲁棒性。论文的主要内容包括以下几个方面:(1)红外成像预处理方法研究。好的成像质量是高性能红外小目标检测的基础。本文对影响红外成像质量的各种因素进行了分析,重点研究了红外图像的非均匀校正、无效像元补偿以及随机噪声抑制方法。在分析典型非均匀校正方法的基础上,结合机载IRST工程实际应用,提出了一种两点定标联合实时定标偏移系数的非均匀校正方法,形成了一套完整的机载IRST成像预处理技术方案,改善了成像质量。(2)红外小目标检测的基础理论方法研究。本文对红外小目标图像的特性进行了分析,总结了红外背景和小目标的关键特性(背景的局部连续性和非局部相关性,小目标的局部显着性和全局稀疏性),明确了红外小目标检测任务的特点,描述了红外小目标检测算法的一般框架。对基于红外块的小目标检测模型进行了介绍,阐明了背景张量的低秩性和目标张量的稀疏性,并介绍了一些相关的数学概念,为后续研究奠定了基础。(3)提出了一种基于高斯尺度空间局部对比度的红外小目标检测方法。受人类视觉系统特性启发,该方法将高斯尺度空间与局部对比度有机结合起来,在尺度图像上计算局部对比度,通过下采样直接获得图像局部区域的灰度特征,使得图像局部特征的提取更加合理高效,从而有更好的背景抑制和目标增强效果。同时,该方法利用了小目标的极值点属性,设计了新的局部对比度计算形式,将滑窗的尺寸与尺度图像的尺度因子对应起来等,从而获得了出色的检测性能且运算效率高,具有较高的工程应用价值。(4)提出了一种基于张量平均秩非凸代理的红外小目标检测方法。该方法在红外块张量模型的基础上,从背景张量低秩特性的度量和局部先验信息的利用入手,采用最小化的部分和平均张量核范数来约束背景张量,利用高斯尺度空间局部对比度方法得到的目标显着图作为先验信息来权重稀疏目标张量,缓解了核范数带来的背景分离偏差,融合了局部先验和非局部先验检测方法的优势,加快了模型的收敛速度。大量实验测试表明,该方法在机载IRST典型应用场景中具有优越的性能。(5)提出了一种基于Laplace函数非凸张量秩代理的红外小目标检测方法。该方法采用奇异值的Laplace函数来度量背景张量的低秩特性,其能更好的逼近奇异值的0范数,从而获得了更好的背景分离效果;将一种局部对比度能量特征作为先验信息融合到基于红外块张量的检测模型中;结构稀疏正则项也被引入,进一步抑制了那些具有稀疏属性的结构性杂波干扰。该方法能够在复杂背景下显着增强小目标,抑制各种形态的背景杂波干扰,具有较强的场景适应性和抗噪能力。(6)研制了一套基于双片多核DSP+FPGA的小目标检测系统。结合机载红外搜索跟踪系统的工程实际,提出了联合检测策略,设计了实时信号处理平台,搭建了测试环境,并对系统进行了测试。本文所提出的技术方法均经过了大量的实验测试,并在与同类方法对比中表现优异,提升了机载IRST在复杂背景下的小目标检测性能,解决了工程应用中的具体问题,为新一代机载红外搜索跟踪系统的工程研制提供了有力支撑。
申一帆[5](2020)在《非正交复用光纤传输系统中的接收端探测技术研究》文中进行了进一步梳理近年来,伴随着经济全球化的不断深化和全球互联网产业的蓬勃发展,人类社会对通信产业的需求愈发增长。全球对通信容量需求的与日俱增,对光纤传输系统提出了日新月异的需求,光纤传输系统的带宽、速率和系统容量的提高逐渐成为迫在眉睫的要求。如何在现有单模光纤通信系统频谱资源的基础上,提升频谱效率已经成为当前光纤传输系统的重要方向。其中,和传统正交复用技术不同,非正交复用光纤传输系统突破了传统光纤通信系统中的正交化限制,并通过接收端的数字处理算法对非正交复用引入的码间干扰进行补偿,从而提升系统的传输容量。随着当前光通信中接收端数字信号处理芯片计算能力的不断提升,基于非正交复用的光传输技术成为进一步提高系统传输效率和容量的重要技术之一。论文针对非正交复用光传输技术中的接收端数字信号处理补偿算法开展了研究,完成的主要工作包括:第一,对非正交复用光纤传输系统进行了理论分析和建模,设计并搭建了基于时域脉冲重叠复用的非正交复用光纤传输系统仿真台。第二,设计并验证了基于多输入多输出(MIMO)和最大似然序列估计(MLSE)的时域非正交复用系统的接收端数字信号处理算法,对不同条件下的非正交复用传输系统接收处理性能进行了仿真对比,仿真结果表明在矩形脉冲成型条件下,基于MLSE和MIMO探测的2路时域非正交复用PDM-QPSK系统性能比同等速率的PDM-16QAM系统性能提高了 6.6dB和2.6dB。基于MLSE探测的非正交复用PDM-QPSK系统相对于符号速率相同的PDM-QPSK系统具有1.5dB的OSNR代价,但传输速率可提高一倍。第三,建立了带宽受限条件下的非正交时域脉冲混叠复用传输仿真模型,并对波分复用条件下的系统传输性能和接收端数字信号处理算法进行了仿真验证。结果表明滤波器带宽对系统性能影响较为明显,如当滤波器带宽在33.6GHz至56GHz范围内时非正交复用的QPSK信号的误码性能相对于16QAM信号具有优势,而随着滤波器带宽收窄接收端信号的误码性能受到的影响较为明显,如当滤波器带宽达到44.8GHz时,PQPSK信号的误码性能相对于PDM-16QAM信号具有约3dB的优势;且在不同滤波器带宽条件下OSNR对系统性能的影响程度也会有所不同。滤波器带宽较宽时,OSNR的增加对改善系统误码性能效果明显,而随着滤波器带宽收窄,OSNR对误码性能的影响减弱。
薛裕峰[6](2020)在《智能立体车库云数据采集和控制系统研究与设计》文中进行了进一步梳理随着我国汽车保有量的迅速增长和人口向城市集聚的趋势不断加剧,立体车库成为满足快速增长的停车需求的重要解决手段。目前的立体车库多是本地采集数据和控制,随着“互联网+”和云计算的兴起,把传感器数据采集到云端进行基于人工智能的大数据处理,进而实现“无人值守”的立体车库成为发展趋势。基于此,本学位论文在江苏省重点研发计划项目的支持下,以智能立体车库云数据采集和控制系统为目标,研究车牌信号提取和立体车库电机振动信号去噪压缩算法,并设计实现了基于ARM+PLC+DSP的云数据采集和控制装置,为无人值守智能立体车库提供可靠技术支撑。首先提出并实现了一种基于MSER+SVM+Le Net-5的车牌识别算法。针对字符区域提取过程中存在字符丢失情况,基于排列组合规则提出了一种缺失字符补全改进算法,并优化了算法流程。通过Linux系统移植和交叉编译将车牌识别算法在Hi3519_IMX226嵌入式DSP控制板实现。其次将立体车库电机的振动信号采集传输到云端以实现故障诊断等功能。通过分析电机振动信号的影响因素与噪声来源建立了采样信号的模型,提出了一种将小波去噪与无损压缩相结合的立体车库电机振动信号处理算法。改进了小波去噪的阈值函数,实现了一种自然对数逼近阈值函数。同时通过仿真和应用测试验证了改进的小波去噪算法与选取的LZMA无损压缩算法的有效性。最后根据系统功能需求,设计实现了基于ARM+PLC+DSP的云数据采集和控制装置,包括现场的电气接线和电控柜布局设计。实现了工业现场基于串口通信的底层传感器信息采集、云通信网络数据传输、立体车库自动存取车和人机交互停车智能引导等功能,解决了数据传输过程中出现的数据丢失、指令设置失败、模块宕机等技术难题,并将系统实地部署运行和联调测试。本学位论文研发的智能立停车库云数据采集和控制系统已在苏州市汾湖高新区实际运行,相关性能指标达到了项目要求,提升了立体车库智能化和网络化监控水平。
赵校朋[7](2020)在《基于DSP与FPGA的传声器阵列采集系统研究与设计》文中认为传声器阵列采集系统是声成像的基础,是噪声控制、故障诊断、低噪声设备研制等领域中的一个重要应用。受中国科学院声学研究所委托要求,本文研究设计了一款基于DSP与FPGA的传声器阵列采集系统。本文首先对传声器阵列采集技术进行了分析与研究,分析对比了几种重要的成像算法,对其应用场合、优缺点进行对比分析,最终采用了波束形成算法作为本设计的核心算法,并进行了相应的仿真分析。针对委托方提出的具体需求进行分析,采用低噪声MEMS麦克风传感器组成阵列,对外界声音信号进行采集;采用高精度ADC芯片ADI7768对64路音频信号进行同步采样与转换;采用低成本、高速FPGA芯片EP4CE10F17C7N设计相应的数据接口对转换后的大量数据进行接收与缓存;采用高性能、低功耗DSP芯片TMS320C6678对采集到的数据进行读取与成像处理;采用快速以太网PHY控制器88E1111实现数据的实时上传,以保证大流量数据的无阻塞传输。根据设计要求对硬件系统进行分析,并完成主要器件选型。根据分析以及选型结果进行了硬件系统的设计,包括原理图以及PCB图的绘制。并根据所绘制原理图,进行了程序部分的设计。本文对常见的波束形成算法进行了 MATLAB仿真,分析它们的优缺点,并选择LCMV算法进行改进。本文还分析了 FIR数字滤波器和按时间抽选的基2 FFT快速傅里叶变换,并进行了 MATLAB仿真,以验证其性能。通过MATLAB仿真证明,数字滤波器、快速傅里叶变换以及波束形成算法性能均满足设计要求。
林俤[8](2020)在《复杂背景下反无人机的智能光电搜索跟踪技术研究》文中认为随着国际反恐和安保形式的变化,必须对来自空中的“低慢小”目标进行有效的防范。城市空中安保面临的空中威胁多为“低慢小”目标,固定翼目标机动飞行的速度可达30~50m/s,飞行角速度较大,且存在机动。在目标机动情况下,高精度拦截系统需要光电搜索跟踪系统的激光测距光轴实时照准目标,以获取目标位置信息,并实时估计目标机动运动参数,这对光电搜索跟踪系统的跟踪精度提出了很高的要求。另一方面,由于城市环境楼宇及建筑物众多,背景复杂,相对于常规净空背景下的无人机目标跟踪,对光电搜索跟踪系统复杂背景下的目标探测及图像跟踪能力也提出了新的要求。智能光电搜索跟踪系统能够实现城市复杂背景下对空中“低慢小”目标的实时搜索、捕获和跟踪,以便为高精度的拦截系统提供目标运动参数。针对复杂背景下“低慢小”目标探测及高精度跟踪的难点,本文分析了目标和复杂背景成像特点,提出了多光谱多元探测光学系统设计方案,将目标信息获取从常规的单一通道扩展为多个通道,使目标和背景可以在不同的波段上进行区分。在多光谱成像探测的基础上重点研究了复杂背景下的目标图像搜索跟踪技术和高精度伺服跟踪技术。在多光谱成像探测的基础上,对于目标机动情况下的高精度伺服跟踪技术,针对多种类型的“低慢小”目标机动能力和典型飞行方式的不同,提出了基于神经网络的IMM卡尔曼滤波前馈补偿跟踪方法。该方法将各种类型目标的机动特性建模后加入IMM卡尔曼滤波机动模型中,并采用神经网络目标识别模型来对搜索到的空中目标进行识别,根据识别到的目标类型自动调整IMM卡尔曼滤波参数,使滤波器对目标的机动特性获得最佳估计。从而为前馈补偿控制算法提供精确的前馈补偿控制量。高精度的伺服控制可保证在目标机动情况下,光学系统光轴仍可以稳定对准目标,使得测距激光可实时连续对目标进行测距。对于城市复杂背景下的目标图像搜索跟踪技术,提出了基于多光谱探测的多模复合TLD目标跟踪算法。在实际系统应用中,TLD算法存在耗时较长,容易产生跟踪漂移等缺点。因此,为了获得实时稳定的跟踪算法,本文提出了改进的复合TLD目标跟踪算法,一方面,图像处理前端首先对获取的图像进行融合处理,融合后的视频帧一路经过抽取(原始50Hz,抽取后为10Hz),之后送入TLD目标跟踪算法,另一路直接送入KCF目标跟踪算法中,KCF算法实时性高,运算速度快,在运行正常的情况下,TLD算法会对KCF样本进行更新,以弥补KCF算法不能适应目标尺度变化及局部遮挡的情况,最外层采用基于先验信息的神经网络目标识别技术,在内层算法丢失目标后重新捕获目标,复合跟踪算法将三种算法进行优势互补,提高了跟踪稳定性和可靠性。对于城市复杂背景下建筑物对无人机的遮挡情况,通过IMM卡尔曼滤波技术来解决目标进入遮挡区域后对其运动轨迹的预测问题。无人机在进入遮挡区域后,其轨迹预测误差随时间的增长而增加。在短时间内,IMM卡尔曼滤波器的预测精度较高,随着时间的增长,目标出现各种机动的概率增加。提出了抗长时遮挡的IMM卡尔曼滤波-TLD目标跟踪算法,并进行了单机试验验证。对多机联合跟踪情况进行了仿真。本章算法根据目标出现区域的概率来自适应的调整跟踪波门,以使目标脱离遮挡区域后能够以较大概率重新进入跟踪视场。本文对以上关键技术在理论分析的基础上,进行了相关试验验证,证明了其算法的有效性。对于机动目标的跟踪精度验证,在实验室环境采用目标模拟器模拟各种目标机动,采用光电搜索跟踪系统实时跟踪并评估其跟踪精度,采用基于神经网络的IMM卡尔曼滤波前馈补偿控制器较常规控制器精度可提高3倍以上,实际系统在外场验证目标典型机动跟踪精度优于0.5mrad;在外场环境验证了多模复合TLD目标跟踪算法,较常规KCF或TLD算法,包含复杂背景下测试视频集的平均测试精度评估为0.9。单次抗遮挡跟踪试验中,基于IMM卡尔曼滤波将轨迹预测误差从常规预测的53m减小到15m。提高光电搜索跟踪系统的智能化水平、抗遮挡能力和精确跟踪能力是未来城市复杂背景反无人机系统的发展方向。对反无人机相关关键技术进行深入研究无论是军用还是民用反恐都将具有重要意义。
李佳伟[9](2020)在《基于无人机测控数据链的角度估计技术研究》文中研究说明新一代无人机技术以其所具有的微型化、低成本、高综合性等诸多优点,在军事和民用领域获得了广泛的关注与迅速的发展,目前已成为世界各国高精尖技术的研究热点之一。由于无人机往往需要在复杂多变的恶劣环境下执行任务,保证无人机与指挥控制系统的稳定通信便显得尤为重要。本文围绕无人机测控系统中的角度估计技术进行研究,针对传统舰载无人机测控系统功能复杂、软硬件资源开销高、系统测角误差众多等问题,提出了一种基于舰载相控阵通信数据链的测控系统体制,通过对无人机目标的角度估计处理和系统误差校准,实时获取无人机目标的准确空间位置,为测控系统的波束调度提供指导,保证无人机测控数据链通信的稳定可靠。本文主要工作安排如下:首先,依据测控角度估计系统的各项功能指标要求,设计了系统结构和信号模型,给出了测控角度估计系统的整体规划,包括相控阵天线子系统、射频接收子系统、增益控制子系统、搜索捕获子系统和测角子系统的详细设计,分析了 OFDM信号的基本原理和通信性能;其次,依据角度估计性能需求,构建相控阵阵列模型,研究天线方向图形成原理,对相控阵和差波束形成方法进行比较研究,简述了四种单脉冲测角算法的原理步骤,并对比分析了其测角性能,设计了基于OFDM的单脉冲测角算法,并仿真验证了其测角性能;然后,针对测控角度估计系统误差问题,对系统中所存在的误差因素包括和差通道幅相不平衡误差、阵列通道幅相不平衡误差、相位模糊误差和测角参数误差等进行了详细分析,研究了误差来源,通过仿真建模分析了误差对测角精度的影响,设计了误差校准方法,完成了在线误差校准的软件设计和实验测试;最后,针对测控角度估计系统软硬件设计问题,提出了角度估计系统的软硬件解决方案,给出了角度估计系统的整体软硬件规划,构建了测角处理模块与各任务模块的协同处理架构,实现了基于AD9361的射频数据采集功能,设计了信号处理和数据采集流程,完成了角度估计系统中各功能模块间的联调与外场实验环境下的功能验证。
李沛轩[10](2020)在《微波光子信号频谱动态调控关键技术研究》文中研究说明微波光子学利用光子技术实现微波信号的产生、传输、处理和控制,具有宽带、高速、低损耗、抗电磁干扰、频率响应平坦和并行处理能力强等方面的优点,因此近年来受到了广泛的关注与研究。而微波光子信号频谱调控是指对微波光子系统输出的信号实现频谱相关的处理功能,其所涉及的频谱滤波、频率变换、频域失真补偿、信号产生和相位控制等关键技术是保障现代通信、电子战、雷达、遥感探测等微波应用系统有效运行的基础关键。随着5G/B5G/6G移动通信系统和军用一体化电子系统等新一代微波系统不断地朝着高频段、大带宽、多制式、多频段和可动态重构方向快速演进,满足动态场景需求的宽带微波光子信号频谱调控技术成为了微波光子学领域的研究热点和难点。本文重点围绕频谱滤波、频率变换以及频域失真补偿这三类微波光子信号频谱调控关键技术,以动态场景应用需求为导向,基于理论分析和实验验证展开了如下研究:首先从可调谐微波光子滤波器(MPF)的性能参数优化和功能拓展两个方面进行了动态可重构微波光子频谱滤波的研究;其次,针对变频转换效率低和带内镜像干扰等关键问题,进行了宽带级联型微波光子混频结构的性能优化研究;然后,针对频谱失真这一微波光子系统普遍存在的共性问题,着力于典型的宽带多频段微波光子系统“子载波复用(SCM)光载无线(Ro F)系统”,重点研究了光纤色散效应导致的频率选择性功率衰落(简称为“色散衰落”)和三阶交调失真(IMD3)这两种微波光子信号频谱失真的动态补偿问题;最后,进行了高性能可重构微波光子射频前端研究,探索了所研究的三类调控技术的综合应用。在动态可重构微波光子频谱滤波的研究中,针对可调谐MPF的性能参数优化,论文基于偏振调制到强度调制转换的原理,结合两级受激布里渊散射(SBS)结构,实现了高带外抑制比性能的可调谐MPF;基于高速电控光波长切换及多相移光纤光栅提出了一种快速调谐的平顶单带通MPF的实现方案。针对MPF的功能拓展,采用多次切割宽带光源的方法实现了双频带独立可调谐的MPF;通过对微波调制边带在两个正交偏振维度上的幅度和相位调控,实现了具有同步带通和带阻滤波功能的多功能可调谐MPF。在级联型微波光子混频器系统的性能优化研究中,论文应用偏振调制技术,通过抑制光载波和光子学方法产生的相位正交I/Q中频信号,实现了变频转换效率的提升和镜像干扰的抑制。在SCM Ro F系统的信号频谱失真动态补偿研究中,论文引入了光独立边带调制技术以实现与系统传输距离和带宽无关的色散衰落补偿;提出了一种非迭代数字盲线性化算法进行IMD3的自适应动态补偿。最后,论文基于频谱切割宽带光源(BOS)、双驱马赫曾德尔调制器(DDMZM)、色散介质和数字后处理方法,构建了高性能可重构微波光子射频前端系统。论文的主要研究成果如下:第一、实现了一种高带外抑制比性能的可调谐MPF。经实验验证,该MPF具有超高的处理精度(7.7 MHz)和高达80 d B的带外抑制比。而且,通过泵浦光的频率控制,在保证高带外抑制比性能的同时,可实现中心频率的连续调谐,调谐范围为2.1 GHz到6.1 GHz。此外,实验展示了一种具备单带通平顶滤波响应的任意多通道快速调谐MPF。在实验中,该MPF的滤波响应矩形系数为2.27,且中心频率的调谐速度可达1.73ns。该MPF还具备高达41 d B的带外抑制比和在12 GHz工作范围内任意多个通道之间快速切换的功能。(第三章)第二、通过差分群时延干涉仪和马赫曾德尔干涉仪进行BOS的多次频谱切割,实现了一种面向双工器应用的双频带独立可调谐MPF。两个独立信道的中心频率可在0到6 GHz以及0到17 GHz之间独立调谐,信道间的隔离度超过44 d B。基于偏振复用MZM(PDM-MZM)和光纤SBS效应,实现了可同时提供频域通道选择(带通滤波)、带外干扰抑制(带阻滤波)和互补滤波输出(同步的带通和带阻滤波)等功能的多功能可调谐MPF。在实验中,该MPF具有高频率处理精度(~20 MHz)、高噪声信号抑制比(带通滤波:>35 d B;带阻滤波>51 d B)以及宽带可调谐(3到15 GHz)等特性。(第三章)第三、级联两个偏振调制器,在不需要光滤波的情况下实现了光载波的有效抑制,解决了低频段射频信号受限的问题,实现了宽谱覆盖的高转换效率微波光子混频系统。在2到15 GHz的输入信号频率测量范围内,该系统的变频转换效率相较于级联MZM结构提高了20 d B。级联相位调制器和偏振调制器,利用偏振调制器、单边带调制和两路光检偏器的组合,产生了两路相位正交的I/Q中频信号,借助于实时模拟电处理和离线数字处理分别实现了45 d B和60 d B的镜像抑制比。(第四章)第四、基于光独立边带调制,结合提出的无频谱保护间隔SCM信道频率分配方案,实验成功地验证了一个具有45个500 MHz带宽4QAM-OFDM SCM信道的Ro F系统,在15 GHz左右的电器件带宽条件下,实现了总带宽为22.5 GHz的SCM信号在50 km标准单模光纤(SSMF)链路中的传输。基于非迭代盲线性化算法和单端口驱动的双驱MZM的调制啁啾控制,实现了SCM Ro F系统的色散衰落和IMD3的灵活、自适应补偿,最终通过实验成功地验证了不同数目的500 MHz带宽64-QAM OFDM SCM信道(1、5、9、12)在不同长度SSMF(20 km、50 km和100 km)中的传输可行性。(第五章)第五、实现了一种具备信号频谱失真补偿功能的高性能可重构微波光子射频前端。实验结果表明,该系统具有可重构带通滤波、宽带微波光子混频和中频带通滤波等功能。DDMZM的偏压控制可实现色散衰落的补偿,获得0到15 GHz的滤波和中频响应调谐范围。该系统借助数字非迭代盲线性化算法有效地抑制了IMD3干扰,在滤波和混频两种功能模式下,系统的无杂散动态范围可分别由87.6 d B·Hz2/3和81 d B·Hz2/3改善为112 d B·Hz4/5和103.7 d B·Hz4/5。(第六章)综上所述,本论文针对动态场景下的微波光子信号频谱调控这一问题,围绕频谱滤波、频率变换和频域失真补偿这三类关键技术展开了研究。论文针对动态可重构微波光子频谱滤波,提出了多种MPF方案,进行了可调谐MPF的性能优化和功能拓展;设计了两种微波光子混频结构,有效地提升和抑制了宽带级联型微波光子混频系统的变频转换效率和镜像干扰;引入了独立边带调制,在解决色散衰落问题地同时,提升了SCM Ro F系统的带宽效率;提出了一种非迭代盲线性化算法,满足了动态场景下的IMD3自适应补偿需求并节省了系统开销和降低了处理时延;进行了上述三类调控技术的综合应用探索,设计了一种高性能可重构微波光子射频前端。
二、矩形目标的快速恢复算法及其DSP实现(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、矩形目标的快速恢复算法及其DSP实现(论文提纲范文)
(1)高速光WDM系统中的非线性效应及其补偿(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 研究背景和意义 |
1.2 国内外研究现状 |
1.2.1 光波分复用系统 |
1.2.2 数字反向传输算法 |
1.2.3 概率整形技术 |
1.3 论文的主要工作内容 |
1.4 论文的组织结构 |
第二章 相干光WDM通信系统 |
2.1 相干光通信系统概述 |
2.2 相干光系统理论模型 |
2.2.1 光发射机 |
2.2.2 光纤信道 |
2.2.3 光接收机 |
2.3 相干光通信系统的DSP算法原理 |
2.3.1 频偏估计 |
2.3.2 相偏估计 |
2.3.3 时钟提取和同步 |
2.4 本章小结 |
第三章 相干光WDM传输系统的非线性效应及噪声估计模型 |
3.1 光通信的非线性效应 |
3.1.1 受激布里渊散射和受激拉曼散射 |
3.1.2 自相位调制和交叉相位调制 |
3.1.3 四波混频 |
3.2 非线性效应理论推导 |
3.2.1 波动方程 |
3.2.2 亥姆赫兹方程推导 |
3.3 相干光WDM系统中非线性噪声的估计模型 |
3.3.1 非线性效应的微扰分析 |
3.3.2 非线性效应噪声模型 |
3.3.3 相干光WDM系统非线性效应的仿真分析 |
3.3.4 非线性噪声的主要成分 |
3.3.5 弹性光WDM系统非线性效应的仿真分析 |
3.4 本章小结 |
第四章 相干光传输系统传输补偿算法 |
4.1 非线性薛定谔方程及其分布傅里叶数值解法 |
4.2 非线性薛定谔方程求解的仿真分析 |
4.3 基于数字反向传输算法的非线性补偿 |
4.3.1 数字反向传输算法理论 |
4.3.2 DBP及有关分布傅里叶计算方法 |
4.3.3 DBP补偿算法仿真结果分析 |
4.4 基于二分搜索的改进DBP补偿方案 |
4.4.1 改良DBP算法原理 |
4.4.2 代价函数的设计 |
4.4.3 基于二分的搜索算法 |
4.4.4 性能分析 |
4.5 本章小结 |
第五章 概率整形与数字反向传输算法的联合补偿方案 |
5.1 概率整形技术 |
5.1.1 研究的必要性 |
5.1.2 概率整形原理分析 |
5.1.3 信号分布和映射规则 |
5.2 常规恒等量分布匹配 |
5.2.1 算法原理 |
5.2.2 应用CCDM的光通信系统 |
5.2.3 CCDM仿真分析 |
5.3 概率整形和数字反向传输算法联合补偿仿真 |
5.3.1 联合补偿方案设计 |
5.3.2 联合补偿性能分析 |
5.3.3 不同步长大小下传输性能分析 |
5.3.4 不同光纤跨段大小下传输性能分析 |
5.4 本章小结 |
第六章 总结与展望 |
6.1 总结 |
6.2 展望 |
参考文献 |
致谢 |
攻读学位期间发表的学术论文目录 |
(2)基于DSP的特殊交通标志提示系统的设计与实现(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 课题研究背景及意义 |
1.2 国内外研究现状 |
1.2.1 交通标志检测技术的研究现状 |
1.2.2 交通标志识别技术的研究现状 |
1.3 当前研究存在的问题 |
1.4 论文主要研究内容及章节安排 |
第二章 交通标志检测算法研究 |
2.1 交通标志先验特征分析 |
2.1.1 交通标志颜色-形状特征 |
2.1.2 道路交通图像局部区域裁剪 |
2.2 颜色空间分析 |
2.3 基于颜色特征的候选区域筛选 |
2.3.1 归一化RGB阈值分割 |
2.3.2 HSV软阈值分割 |
2.3.3 联合颜色空间分割方法 |
2.4 基于形状特征的交通标志定位 |
2.4.1 图像形态学处理 |
2.4.2 连通域筛选 |
2.4.3 几何形状判断 |
2.5 实验结果与分析 |
2.6 本章小结 |
第三章 特殊场景下交通标志检测算法研究 |
3.1 光照条件不佳下的交通标志处理 |
3.1.1 经典图像增强算法 |
3.1.2 Retinex图像增强算法 |
3.1.3 基于光照判断的Retinex增强算法 |
3.2 部分轮廓缺失的交通标志处理 |
3.2.1 轮廓凸包化 |
3.2.2 Douglas Peucker多边形逼近算法 |
3.2.3 基于Hough直线检测的三角形、矩形标志补全 |
3.2.4 基于关键点的最小二乘椭圆拟合法的圆形标志补全 |
3.3 几何畸变的交通标志处理 |
3.3.1 仿射变换 |
3.3.2 基于仿射变换的几何畸变校正 |
3.4 本章小结 |
第四章 交通标志识别算法研究 |
4.1 特征提取与特征融合 |
4.1.1 HOG特征 |
4.1.2 LBP特征 |
4.1.3 HOG-max LBP特征融合 |
4.2 基于HOG-max LBP特征融合的SVM交通标志识别 |
4.2.1 SVM分类策略 |
4.2.2 基于分级SVM的交通标志识别 |
4.3 实验结果与分析 |
4.4 本章小结 |
第五章 交通标志提示系统的DSP实现 |
5.1 DSP硬件平台及其开发技术简介 |
5.1.1 DSP硬件平台简介 |
5.1.2 CCS集成开发环境 |
5.1.3 系统开发流程 |
5.2 交通标志提示系统总体架构 |
5.3 交通标志提示系统移植与优化 |
5.3.1 算法移植 |
5.3.2 算法优化 |
5.4 实验结果与分析 |
5.5 本章小结 |
第六章 总结与展望 |
6.1 论文工作总结 |
6.2 未来工作展望 |
参考文献 |
致谢 |
(3)T型三电平电能质量综合治理装置研制(论文提纲范文)
摘要 |
abstract |
第1章 绪论 |
1.1 研究背景 |
1.1.1 电能质量问题 |
1.1.2 电能质量治理措施 |
1.2 电能质量治理相关标准 |
1.3 电能质量治理装置产品调研 |
1.4 本文主要内容 |
第2章 T型三电平电能质量综合治理装置滤波器设计 |
2.1 LCL-LC滤波器拓扑发展 |
2.2 输出滤波器设计 |
2.2.1 LCL-LC型滤波器的LCL等效模型 |
2.2.2 LCL-LC滤波器各参数约束条件 |
2.2.3 LCL-LC滤波器的设计实例 |
2.3 LCL-LC滤波器无源阻尼分析 |
2.4 小结 |
第3章 T型三电平电能质量综合治理装置主电路分析 |
3.1 T型三电平拓扑工作原理 |
3.2 三电平SVPWM调制 |
3.3 中点电位不平衡抑制策略 |
3.3.1 中点电位不平衡原因及危害 |
3.3.2 中点电位不平衡抑制方法 |
3.4 仿真验证 |
3.5 小结 |
第4章 T型三电平电能质量综合治理装置控制策略 |
4.1 装置数学模型推导 |
4.2 装置控制策略分析 |
4.2.1 直流侧电容母线电压控制 |
4.2.2 不平衡电流补偿策略 |
4.2.3 谐波电流补偿策略 |
4.2.4 VPI控制器的参数设计 |
4.2.5 整体控制策略 |
4.3 仿真结果 |
4.4 小结 |
第5章 装置搭建与实验 |
5.1 硬件电路设计 |
5.1.1 控制电路设计 |
5.1.2 开关器件选型 |
5.1.3 驱动电路设计 |
5.1.4 散热器设计 |
5.1.5 滤波器电感设计 |
5.1.6 直流侧母线电压设计 |
5.1.7 直流侧电容设计 |
5.1.8 电路板PCB层叠设计 |
5.1.9 装置整体结构 |
5.2 控制系统设计 |
5.2.1 装置延时特性分析 |
5.2.2 控制系统整体架构 |
5.3 实验验证 |
5.3.1 硬件A/D采样测试 |
5.3.2 软件A/D采样测试 |
5.3.3 SVPWM发波测试 |
5.3.4 直流母线电压测试 |
5.3.5 谐波补偿实验 |
5.3.6 不平衡条件下谐波补偿实验 |
5.3.7 不平衡条件综合补偿实验 |
5.3.8 切载实验 |
5.3.9 不同开关频率下补偿实验对比 |
5.3.10 T型三电平中点电位不平衡抑制实验 |
5.4 小结 |
第6章 结论与展望 |
6.1 主要结论 |
6.2 展望 |
参考文献 |
附录A:全文符号及术语 |
附录B:三相RC不可控整流负载 |
附录C:不同开关频率(5kHz~20kHz)实验波形 |
在校期间的研究成果 |
致谢 |
(4)机载IRST小目标检测技术研究(论文提纲范文)
摘要 |
abstract |
缩略词对照表 |
第一章 绪论 |
1.1 研究背景与意义 |
1.2 国内外研究现状 |
1.2.1 基于背景估计的小目标检测 |
1.2.2 基于人类视觉系统特性的小目标检测 |
1.2.3 基于低秩和稀疏表示的小目标检测 |
1.3 主要研究内容及技术路线 |
1.4 本文结构安排 |
第二章 红外成像预处理研究及小目标检测基础 |
2.1 红外成像预处理 |
2.1.1 非均匀性校正 |
2.1.2 无效像元替换 |
2.1.3 机载IRST成像预处理 |
2.2 红外小目标图像特性分析 |
2.2.1 红外图像整体特性 |
2.2.2 红外背景成像特性 |
2.2.3 红外小目标成像特性 |
2.3 红外小目标检测算法框架 |
2.4 基于红外块的小目标检测方法 |
2.4.1 预备知识 |
2.4.2 基于红外块的小目标检测模型 |
2.5 本章小结 |
第三章 基于高斯尺度空间局部对比度的红外小目标检测 |
3.1 人类视觉系统特性与红外小目标检测 |
3.1.1 对比度机制 |
3.1.2 方向特征信息选择机制 |
3.1.3 多尺度表示与自适应尺度选择 |
3.2 基于高斯尺度空间局部对比度的红外小目标检测 |
3.2.1 高斯尺度空间 |
3.2.2 增强的局部对比度 |
3.2.3 尺度空间显着图计算 |
3.2.4 方法的总体流程 |
3.3 评价指标及实验 |
3.3.1 性能评价指标 |
3.3.2 实验结果与分析 |
3.4 本章小结 |
第四章 基于张量平均秩非凸代理的红外小目标检测 |
4.1 张量分解与张量秩 |
4.1.1 CP分解与CP秩 |
4.1.2 Tucker分解与Tucker秩 |
4.1.3 基于T-SVD的张量秩 |
4.2 PSATNN-GSS红外小目标检测模型构建及求解 |
4.2.1 基于PSATNN的低秩背景张量正则化 |
4.2.2 局部对比度权重的稀疏目标张量正则化 |
4.2.3 模型求解 |
4.2.4 总体检测方法 |
4.3 实验结果及分析 |
4.3.1 实验环境准备 |
4.3.2 融合检测验证 |
4.3.3 多尺度多目标检测验证 |
4.3.4 单帧图像实验 |
4.3.5 序列图像实验 |
4.4 本章小结 |
第五章 基于Laplace函数非凸张量秩代理的红外小目标检测 |
5.1 LFNTRS-SSR红外小目标检测模型构建 |
5.1.1 基于Laplace函数的非凸张量秩代理 |
5.1.2 局部对比度能量 |
5.1.3 结构稀疏正则项 |
5.2 模型求解及总体检测方法 |
5.2.1 模型求解 |
5.2.2 总体检测方法 |
5.3 实验结果及分析 |
5.3.1 实验准备 |
5.3.2 参数分析 |
5.3.3 定性分析 |
5.3.4 定量评价 |
5.4 本章小结 |
第六章 机载IRST小目标检测系统设计及实现 |
6.1 联合检测策略 |
6.2 硬件设计 |
6.2.1 多核DSP设计 |
6.2.2 FPGA设计 |
6.2.3 基于DSP+FPGA的信号处理平台设计 |
6.3 软件设计 |
6.4 系统测试 |
6.5 本章小结 |
第七章 总结与展望 |
7.1 全文总结 |
7.1.1 工作总结 |
7.1.2 主要贡献和创新点 |
7.2 后续工作展望 |
致谢 |
参考文献 |
攻读博士学位期间取得的成果 |
(5)非正交复用光纤传输系统中的接收端探测技术研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 光纤通信技术研究现状及发展趋势 |
1.2 非正交复用系统研究现状及分析 |
1.3 论文主要内容及结构 |
第二章 非正交复用光纤传输系统及模型 |
2.1 非正交复用光纤传输系统发展分析 |
2.1.1 非正交复用光纤传输系统的时域传输 |
2.1.2 非正交复用光纤传输系统的频域传输 |
2.2 时分复用的非正交复用技术原理 |
2.3 非正交复用光纤传输系统结构 |
2.3.1 发送端原理与模型 |
2.3.2 信道原理与模型 |
2.3.3 接收端原理 |
2.4 系统性能评估原理 |
2.5 本章小结 |
第三章 非正交复用系统接收端探测算法性能研究 |
3.1 探测算法性能分析 |
3.1.1 MLSE算法 |
3.1.2 MMA算法 |
3.1.3 时域MIMO算法 |
3.2 仿真验证及性能分析 |
3.2.1 仿真系统模型与参数 |
3.2.2 仿真结果分析 |
3.3 本章小结 |
第四章 带宽受限的非正交复用光纤传输系统仿真研究 |
4.1 时域和频域复用的研究 |
4.1.2 带宽受限的非正交复用光纤传输系统流程 |
4.2 仿真验证及性能分析 |
4.2.1 仿真系统模型与参数 |
4.2.2 仿真结果分析 |
4.3 本章小结 |
第五章 全文总结与未来展望 |
5.1 全文总结 |
5.2 未来展望 |
参考文献 |
致谢 |
攻读硕士期间发表的学术论文目录 |
(6)智能立体车库云数据采集和控制系统研究与设计(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 课题来源与意义 |
1.2 国内外研究现状 |
1.3 研究重点和难点 |
1.4 论文组织结构 |
1.5 本章小结 |
第二章 智能立体车库云数据采集和控制系统总体方案设计 |
2.1 系统需求分析 |
2.2 系统总体架构设计 |
2.3 本章小结 |
第三章 基于DSP的车牌识别算法研究与应用 |
3.1 车牌识别算法嵌入式实现总体分析 |
3.2 MSER+SVM+LeNet-5 车牌识别算法研究 |
3.2.1 MSER字符提取算法 |
3.2.2 SVM字符区域判别算法 |
3.2.3 LeNet-5 字符识别算法 |
3.2.4 字符补全改进算法 |
3.3 车牌识别算法嵌入式实现 |
3.3.1 车牌识别算法测试 |
3.3.2 嵌入式Linux环境搭建 |
3.3.3 车牌识别算法移植 |
3.4 本章小结 |
第四章 立体车库电机振动数据去噪与压缩算法研究与应用 |
4.1 电机振动数据去噪与压缩总体分析 |
4.1.1 电机振动构成及噪声干扰分析 |
4.1.2 去噪与压缩过程总体研究思路 |
4.1.3 去噪与压缩算法性能评价 |
4.2 小波去噪与压缩算法研究与应用 |
4.2.1 小波去噪改进算法研究 |
4.2.2 无损压缩算法比较与选取 |
4.2.3 去噪与压缩算法仿真测试 |
4.2.4 去噪与压缩算法实际应用 |
4.3 本章小结 |
第五章 基于ARM+PLC的云数据采集和控制装置设计与实现 |
5.1 云数据采集和控制装置总体架构 |
5.2 云数据采集和控制装置硬件设计 |
5.2.1 最小系统模块 |
5.2.2 电源模块 |
5.2.3 串口通信模块 |
5.2.4 云通信模块 |
5.2.5 电气设计模块 |
5.3 云数据采集和控制装置软件开发 |
5.3.1 串口通信功能模块 |
5.3.2 云通信功能模块 |
5.3.3 自动存取车功能模块 |
5.3.4 人机交互功能模块 |
5.4 系统运行与测试 |
5.4.1 系统运行 |
5.4.2 系统测试 |
5.5 本章小结 |
第六章 总结与展望 |
6.1 论文总结 |
6.2 研究展望 |
致谢 |
研究生阶段研究成果及发表学术论文情况 |
参考文献 |
(7)基于DSP与FPGA的传声器阵列采集系统研究与设计(论文提纲范文)
摘要 |
Abstract |
变量注释表 |
1 绪论 |
1.1 课题研究背景与意义 |
1.2 课题国内外研究现状 |
1.3 课题研究目的与内容 |
2 声音信号分析及定位算法简介 |
2.1 声音信号分析 |
2.2 声源定位原理简介 |
2.3 定位原理比较 |
2.4 传声器阵列对声源定位的影响 |
2.5 本章小结 |
3 常见波束形成算法研究 |
3.1 常规可控波束形成法 |
3.2 最小方差无失真响应波束形成器 |
3.3 线性约束最小方差波束形成器 |
3.4 本章小结 |
4 系统硬件设计 |
4.1 系统主要器件选型及整体硬件电路设计 |
4.2 系统电源电路设计 |
4.3 信号采集与调理电路设计 |
4.4 信号处理电路设计 |
4.5 通信电路设计 |
4.6 本章小结 |
5 系统软件设计 |
5.1 系统主程序设计 |
5.2 FPGA程序设计 |
5.3 DSP程序设计 |
5.4 本章小结 |
6 实验与分析 |
6.1 实验结果与分析 |
6.2 本章小结 |
7 总结与展望 |
7.1 总结 |
7.2 展望 |
参考文献 |
附录 |
作者简历 |
致谢 |
学位论文数据集 |
(8)复杂背景下反无人机的智能光电搜索跟踪技术研究(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 研究背景及意义 |
1.2 国内外研究现状 |
1.2.1 反无人机系统国内外研究现状 |
1.2.2 目标探测跟踪领域国内外研究现状 |
1.3 当前光电跟踪装备及目标搜索跟踪技术中存在的问题 |
1.4 研究难点 |
1.5 论文主要研究内容 |
第二章 目标成像特点及基本跟踪设计理论 |
2.1 引言 |
2.2 “低慢小”目标在复杂背景下的成像特点 |
2.2.1 光谱特征 |
2.2.2 颜色特征 |
2.2.3 偏振特性 |
2.2.4 三维特征 |
2.2.5 运动特征 |
2.3 基于多光谱探测的光学载荷设计 |
2.4 光电跟踪基本伺服跟踪理论 |
2.4.1 基本控制原理 |
2.4.2 复合前馈控制 |
2.4.3 目标跟踪及轨迹预测 |
2.4.4 动载体情况下的陀螺稳像控制 |
2.5 基于复杂背景的基本图像跟踪理论 |
2.6 本章小结 |
第三章 改进的多模TLD目标跟踪算法 |
3.1 引言 |
3.2 TLD算法的主要模块 |
3.2.1 跟踪器 |
3.2.2 检测器 |
3.2.3 整合器 |
3.2.4 P-N学习模块 |
3.3 KCF算法简介 |
3.3.1 构造样本 |
3.3.2 训练分类器 |
3.3.3 目标检测 |
3.3.4 分类器的更新 |
3.4 多模复合TLD目标跟踪算法 |
3.4.1 TLD算法中改进的多特征融合目标跟踪器 |
3.4.2 改进的多模复合TLD算法 |
3.4.3 仿真 |
3.5 本章小结 |
第四章 基于神经网络的IMM卡尔曼滤波前馈补偿伺服控制算法 |
4.1 引言 |
4.2 伺服系统构成及工作原理 |
4.3 基于神经网络的IMM卡尔曼滤波复合控制器 |
4.4 用于估计模型最优参数的神经网络参数训练器 |
4.5 仿真分析 |
4.6 本章小结 |
第五章 抗长时遮挡的联合IMM卡尔曼滤波-TLD目标跟踪算法 |
5.1 引言 |
5.2 基本原理 |
5.3 目标遮挡时对可能出现区域的概率估计 |
5.4 仿真分析 |
5.5 多机联合IMM卡尔曼滤波-TLD目标跟踪 |
5.6 基于抗长时遮挡IMM卡尔曼滤波器轨迹预估的延伸功能 |
5.7 本章小结 |
第六章 硬件设计与实现 |
6.1 引言 |
6.2 智能光电搜索跟踪系统构成和工作原理 |
6.3 光学系统设计 |
6.4 搜索跟踪系统的伺服控制模块设计 |
6.4.1 伺服控制系统设计要点 |
6.4.2 伺服控制系统总体构架 |
6.4.3 伺服控制电控设计 |
6.5 时序控制模块设计 |
6.6 GPU图像处理平台设计 |
6.7 关键技术 |
6.8 本章小结 |
第七章 智能光电搜索跟踪系统试验分析 |
7.1 引言 |
7.2 IMM卡尔曼滤波前馈补偿控制跟踪精度试验 |
7.3 多模复合TLD目标跟踪试验 |
7.4 抗长时遮挡IMM卡尔曼滤波-TLD目标跟踪试验 |
7.5 本章小结 |
第八章 工作总结与展望 |
8.1 总结 |
8.2 展望 |
参考文献 |
致谢 |
作者简历及攻读学位期间发表的学术论文与研究成果 |
(9)基于无人机测控数据链的角度估计技术研究(论文提纲范文)
摘要 |
ABSTRACT |
符号对照表 |
缩略语对照表 |
第一章 绪论 |
1.1 课题研究背景及意义 |
1.2 国内外研究现状 |
1.2.1 目标角度估计研究现状 |
1.2.2 无人机测控数据链研究现状 |
1.2.3 基于测控数据链的目标角度估计研究现状 |
1.3 论文主要工作及内容安排 |
第二章 舰载无人机测控角度估计系统结构与信号模型 |
2.1 舰载无人机测控角度估计系统结构 |
2.1.1 测控角度估计系统功能指标分析与整体设计 |
2.1.2 测控角度估计系统的天线子系统设计 |
2.1.3 测控角度估计系统的射频接收子系统设计 |
2.1.4 测控角度估计系统的自动增益控制子系统设计 |
2.1.5 测控角度估计系统的搜索捕获子系统设计 |
2.1.6 测控角度估计系统的测角子系统设计 |
2.2 OFDM信号模型 |
2.2.1 OFDM信号基本原理 |
2.2.2 OFDM信号波形分析 |
2.2.3 OFDM信号误码率分析 |
2.3 本章小结 |
第三章 测控角度估计系统测角算法研究 |
3.1 相控阵天线阵列模型 |
3.1.1 线性相控阵天线阵列 |
3.1.2 矩形平面相控阵天线阵列 |
3.1.3 仿真结果与分析 |
3.2 相控阵天线和差波束形成 |
3.2.1 双指向和差法 |
3.2.2 直接和差加权法 |
3.2.3 对称取反法 |
3.2.4 仿真结果与分析 |
3.3 相控阵单脉冲测角算法 |
3.3.1 双波束直接比幅 |
3.3.2 双波束直接鉴相 |
3.3.3 振幅和差单脉冲 |
3.3.4 相位和差单脉冲 |
3.3.5 仿真结果与分析 |
3.4 基于OFDM的单脉冲测角算法 |
3.4.1 测角算法的选择 |
3.4.2 基于OFDM的测角算法设计 |
3.4.3 仿真结果与分析 |
3.5 本章小结 |
第四章 测控角度估计系统误差分析与校准 |
4.1 和差通道幅相不平衡误差分析 |
4.1.1 和差通道幅相不平衡误差模型 |
4.1.2 和差通道幅相不平衡误差模型仿真 |
4.1.3 和差通道幅相不平衡误差对测角精度影响分析 |
4.1.4 和差通道幅相不平衡误差对测角精度影响仿真 |
4.2 和差通道幅相不平衡误差校准 |
4.2.1 和差通道幅相误差校准原理 |
4.2.2 和差通道幅相误差在线校准设计 |
4.2.3 和差通道幅相误差校准系统测试与分析 |
4.3 阵列通道幅相不平衡误差分析 |
4.3.1 阵列通道幅相不平衡误差模型 |
4.3.2 阵列通道幅相不平衡误差对测角精度影响分析 |
4.3.3 阵列通道幅相不平衡误差对测角精度影响仿真 |
4.4 阵列通道幅相不平衡误差校准 |
4.4.1 阵列通道幅相误差在线校准设计 |
4.4.2 阵列通道幅相误差校准系统测试与分析 |
4.5 解相位模糊与测角参数误差分析 |
4.5.1 相位模糊误差来源分析 |
4.5.2 解相位模糊误差 |
4.5.3 测角参数误差分析 |
4.5.4 仿真结果与分析 |
4.6 本章小结 |
第五章 测控角度估计系统信号处理算法的软硬件实现 |
5.1 角度估计系统整体设计 |
5.1.1 角度估计系统功能概述 |
5.1.2 信号处理器芯片选型 |
5.1.3 角度估计系统数据接口设计 |
5.1.4 角度估计系统硬件设计实现 |
5.2 角度估计系统射频数据采集模块设计 |
5.2.1 数据采集模块设计分析 |
5.2.2 AD9361芯片介绍 |
5.2.3 AD9361工作原理 |
5.2.4 AD9361关键寄存器配置 |
5.2.5 基于DSP的AD9361寄存器配置 |
5.3 角度估计系统信号处理模块设计 |
5.3.1 信号处理流程设计 |
5.3.2 信号采集流程设计 |
5.3.3 SRIO通信接口设计 |
5.4 测角算法的软件实现 |
5.4.1 和差测角的DSP实现 |
5.4.2 和差测角的外场测试 |
5.5 本章小结 |
第六章 总结与展望 |
6.1 本文总结 |
6.2 工作展望 |
参考文献 |
致谢 |
作者简介 |
(10)微波光子信号频谱动态调控关键技术研究(论文提纲范文)
摘要 |
abstract |
第1章 绪论 |
1.1 论文的研究背景及意义 |
1.2 微波光子信号频谱调控技术研究现状 |
1.2.1 微波光子滤波技术 |
1.2.2 微波光子混频技术 |
1.2.3 微波光子信号频谱失真补偿技术 |
1.3 论文的主要工作及结构 |
第2章 微波光子信号频谱调控的基本原理与技术 |
2.1 微波光子信号频谱调控基础技术 |
2.1.1 电光调制技术 |
2.1.2 基于光纤光学的光域信号处理技术 |
2.1.3 光电探测技术 |
2.2 典型微波光子信号频谱调控系统的功能实现原理 |
2.2.1 级联EOM架构微波光子混频原理 |
2.2.2 多光源架构微波光子滤波原理 |
2.3 典型微波光子信号频谱失真与原理 |
2.3.1 色散致频率选择性衰落 |
2.3.2 非线性频谱失真 |
2.4 本章小结 |
第3章 动态可重构微波光子频谱滤波研究 |
3.1 滤波性能参数优化 |
3.1.1 高带外抑制比的可调谐微波光子滤波器 |
3.1.2 多通道快速调谐的平顶单带通微波光子滤波器 |
3.2 滤波功能拓展 |
3.2.1 同步带通和带阻滤波的可调谐微波光子滤波器 |
3.2.2 双频带独立可调谐的微波光子滤波器 |
3.3 本章小结 |
第4章 宽带级联型微波光子混频系统的性能优化研究 |
4.1 宽谱覆盖高转换效率微波光子混频器 |
4.1.1 方案设计与无光滤波条件下光载波抑制原理 |
4.1.2 高转换效率混频实验与结果分析 |
4.2 高镜像抑制比微波光子混频器 |
4.2.1 方案设计与镜像干扰抑制原理 |
4.2.2 高镜像抑制比混频实验与结果分析 |
4.3 本章小结 |
第5章 宽带RoF系统的频谱失真动态补偿研究 |
5.1 基于光独立边带调制的宽带SCMRo F系统 |
5.1.1 光ISB调制SCM Ro F系统架构和信道频率分配方案 |
5.1.2 光ISB调制SCM Ro F系统传输性能实验 |
5.2 带通SCMRo F系统的非线性失真与色散衰落补偿 |
5.2.1 系统架构设计以及色散衰落和IMD3补偿原理 |
5.2.2 色散衰落和IMD3补偿实验与系统性能分析 |
5.3 本章小结 |
第6章 高性能可重构微波光子射频前端研究 |
6.1 微波光子射频前端的方案架构设计 |
6.2 可重构信号处理功能实验验证 |
6.2.1 微波光子带通滤波 |
6.2.2 微波光子混频和中频带通滤波 |
6.3 频谱失真补偿功能实验验证 |
6.3.1 滤波模式频谱失真补偿 |
6.3.2 混频模式频谱失真补偿 |
6.4 本章小结 |
总结与展望 |
致谢 |
参考文献 |
攻读博士期间发表的论文及科研成果 |
四、矩形目标的快速恢复算法及其DSP实现(论文参考文献)
- [1]高速光WDM系统中的非线性效应及其补偿[D]. 覃禹让. 北京邮电大学, 2021(01)
- [2]基于DSP的特殊交通标志提示系统的设计与实现[D]. 焦泽中. 内蒙古大学, 2021(12)
- [3]T型三电平电能质量综合治理装置研制[D]. 郭磊轩. 北方工业大学, 2021(01)
- [4]机载IRST小目标检测技术研究[D]. 管学伟. 电子科技大学, 2021
- [5]非正交复用光纤传输系统中的接收端探测技术研究[D]. 申一帆. 北京邮电大学, 2020(05)
- [6]智能立体车库云数据采集和控制系统研究与设计[D]. 薛裕峰. 东南大学, 2020(01)
- [7]基于DSP与FPGA的传声器阵列采集系统研究与设计[D]. 赵校朋. 山东科技大学, 2020(06)
- [8]复杂背景下反无人机的智能光电搜索跟踪技术研究[D]. 林俤. 中国科学院大学(中国科学院西安光学精密机械研究所), 2020(06)
- [9]基于无人机测控数据链的角度估计技术研究[D]. 李佳伟. 西安电子科技大学, 2020(05)
- [10]微波光子信号频谱动态调控关键技术研究[D]. 李沛轩. 西南交通大学, 2020