Print

神经网络毕业论文怎么写

问:人工神经网络的论文
  1. 答:你不翻译了
    ???
问:谁能教我写一个MATLAB实现BP神经网络预测股票价格的编码,我要写毕业论文,不懂,多谢啊!
  1. 答:网络的训练过程与使用过程了两码事。
    比如BP应用在分类,网络的训练是指的给你一些样本,同时告诉你这些样本属于哪一类,然后代入网络训练,使得这个网络具备一定的分类能力,训练完成以后再拿一个未知类别的数据通过网络进行分类。这里的训练过程就是先伪随机生成权值,然后把样本输入进去算出每一层的输出,并最终算出来预测输出(输出层的输出),这是正向学习过程;最后通过某种训练算法(最基本的是感知器算法)使得代价(预测输出与实际输出的某范数)函数关于权重最小,这个就是反向传播过程。
    您所说的那种不需要预先知道样本类别的网络属于无监督类型的网络,比如自组织竞争神经网络。
  2. 答:你得先准备大量数据包括:输入变量和输出变量。要有很多组才能建立准确的模型,可以用matlab编下试试,我也是刚学。
  3. 答:原创的
    Q我索取
问:我研究BP神经网络,想问下插做数据如何用,起到什么作用,求详解?
  1. 答:多看看文献吧神经网络可以用作分类、聚类、预测等。神经网络需要有一定量的历史数据,通过历史数据的训练,网络可以学习到数据中隐含的知识。在你的问题中,首先要找到某些问题的一些特征,以及对应的评价数据,用这些数据来训练神经网络。 虽然BP网络得到了广泛的应用,但自身也存在一些缺陷和不足,主要包括以下几个方面的问题。 首先,由于学习速率是固定的,因此网络的收敛速度慢,需要较长的训练时间。对于一些复杂问题,BP算法需要的训练时间可能非常长,这主要是由于学习速率太小造成的,可采用变化的学习速率或自适应的学习速率加以改进。 其次,BP算法可以使权值收敛到某个值,但并不保证其为误差平面的全局最小值,这是因为采用梯度下降法可能产生一个局部最小值。对于这个问题,可以采用附加动量法来解决。 再次,网络隐含层的层数和单元数的选择尚无理论上的指导,一般是根据经验或者通过反复实验确定。因此,网络往往存在很大的冗余性,在一定程度上也增加了网络学习的负担。 最后,网络的学习和记忆具有不稳定性。也就是说,如果增加了学习样本,训练好的网络就需要从头开始训练,对于以前的权值和阈值是没有记忆的。但是可以将预测、分类或聚类做的比较好的权值保存。

本文来源: https://www.lunwen55.cn/article/f3cc4d4d3168ec8c268420f9.html